195 lines
7.1 KiB
C#
195 lines
7.1 KiB
C#
// -----------------------------------------------------------------------
|
|
// <copyright file="BadTriQueue.cs">
|
|
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
|
|
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
|
|
// </copyright>
|
|
// -----------------------------------------------------------------------
|
|
|
|
namespace TriangleNet.Meshing.Data
|
|
{
|
|
using TriangleNet.Geometry;
|
|
using TriangleNet.Topology;
|
|
|
|
/// <summary>
|
|
/// A (priority) queue for bad triangles.
|
|
/// </summary>
|
|
/// <remarks>
|
|
// The queue is actually a set of 4096 queues. I use multiple queues to
|
|
// give priority to smaller angles. I originally implemented a heap, but
|
|
// the queues are faster by a larger margin than I'd suspected.
|
|
/// </remarks>
|
|
class BadTriQueue
|
|
{
|
|
const double SQRT2 = 1.4142135623730950488016887242096980785696718753769480732;
|
|
|
|
public int Count { get { return this.count; } }
|
|
|
|
// Variables that maintain the bad triangle queues. The queues are
|
|
// ordered from 4095 (highest priority) to 0 (lowest priority).
|
|
BadTriangle[] queuefront;
|
|
BadTriangle[] queuetail;
|
|
int[] nextnonemptyq;
|
|
int firstnonemptyq;
|
|
|
|
int count;
|
|
|
|
public BadTriQueue()
|
|
{
|
|
queuefront = new BadTriangle[4096];
|
|
queuetail = new BadTriangle[4096];
|
|
nextnonemptyq = new int[4096];
|
|
|
|
firstnonemptyq = -1;
|
|
|
|
count = 0;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Add a bad triangle data structure to the end of a queue.
|
|
/// </summary>
|
|
/// <param name="badtri">The bad triangle to enqueue.</param>
|
|
public void Enqueue(BadTriangle badtri)
|
|
{
|
|
double length, multiplier;
|
|
int exponent, expincrement;
|
|
int queuenumber;
|
|
int posexponent;
|
|
int i;
|
|
|
|
this.count++;
|
|
|
|
// Determine the appropriate queue to put the bad triangle into.
|
|
// Recall that the key is the square of its shortest edge length.
|
|
if (badtri.key >= 1.0)
|
|
{
|
|
length = badtri.key;
|
|
posexponent = 1;
|
|
}
|
|
else
|
|
{
|
|
// 'badtri.key' is 2.0 to a negative exponent, so we'll record that
|
|
// fact and use the reciprocal of 'badtri.key', which is > 1.0.
|
|
length = 1.0 / badtri.key;
|
|
posexponent = 0;
|
|
}
|
|
// 'length' is approximately 2.0 to what exponent? The following code
|
|
// determines the answer in time logarithmic in the exponent.
|
|
exponent = 0;
|
|
while (length > 2.0)
|
|
{
|
|
// Find an approximation by repeated squaring of two.
|
|
expincrement = 1;
|
|
multiplier = 0.5;
|
|
while (length * multiplier * multiplier > 1.0)
|
|
{
|
|
expincrement *= 2;
|
|
multiplier *= multiplier;
|
|
}
|
|
// Reduce the value of 'length', then iterate if necessary.
|
|
exponent += expincrement;
|
|
length *= multiplier;
|
|
}
|
|
// 'length' is approximately squareroot(2.0) to what exponent?
|
|
exponent = 2 * exponent + (length > SQRT2 ? 1 : 0);
|
|
// 'exponent' is now in the range 0...2047 for IEEE double precision.
|
|
// Choose a queue in the range 0...4095. The shortest edges have the
|
|
// highest priority (queue 4095).
|
|
if (posexponent > 0)
|
|
{
|
|
queuenumber = 2047 - exponent;
|
|
}
|
|
else
|
|
{
|
|
queuenumber = 2048 + exponent;
|
|
}
|
|
|
|
// Are we inserting into an empty queue?
|
|
if (queuefront[queuenumber] == null)
|
|
{
|
|
// Yes, we are inserting into an empty queue.
|
|
// Will this become the highest-priority queue?
|
|
if (queuenumber > firstnonemptyq)
|
|
{
|
|
// Yes, this is the highest-priority queue.
|
|
nextnonemptyq[queuenumber] = firstnonemptyq;
|
|
firstnonemptyq = queuenumber;
|
|
}
|
|
else
|
|
{
|
|
// No, this is not the highest-priority queue.
|
|
// Find the queue with next higher priority.
|
|
i = queuenumber + 1;
|
|
while (queuefront[i] == null)
|
|
{
|
|
i++;
|
|
}
|
|
// Mark the newly nonempty queue as following a higher-priority queue.
|
|
nextnonemptyq[queuenumber] = nextnonemptyq[i];
|
|
nextnonemptyq[i] = queuenumber;
|
|
}
|
|
// Put the bad triangle at the beginning of the (empty) queue.
|
|
queuefront[queuenumber] = badtri;
|
|
}
|
|
else
|
|
{
|
|
// Add the bad triangle to the end of an already nonempty queue.
|
|
queuetail[queuenumber].next = badtri;
|
|
}
|
|
// Maintain a pointer to the last triangle of the queue.
|
|
queuetail[queuenumber] = badtri;
|
|
// Newly enqueued bad triangle has no successor in the queue.
|
|
badtri.next = null;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Add a bad triangle to the end of a queue.
|
|
/// </summary>
|
|
/// <param name="enqtri"></param>
|
|
/// <param name="minedge"></param>
|
|
/// <param name="apex"></param>
|
|
/// <param name="org"></param>
|
|
/// <param name="dest"></param>
|
|
public void Enqueue(ref Otri enqtri, double minedge, Vertex apex, Vertex org, Vertex dest)
|
|
{
|
|
// Allocate space for the bad triangle.
|
|
BadTriangle newbad = new BadTriangle();
|
|
|
|
newbad.poortri = enqtri;
|
|
newbad.key = minedge;
|
|
newbad.apex = apex;
|
|
newbad.org = org;
|
|
newbad.dest = dest;
|
|
|
|
Enqueue(newbad);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Remove a triangle from the front of the queue.
|
|
/// </summary>
|
|
/// <returns></returns>
|
|
public BadTriangle Dequeue()
|
|
{
|
|
// If no queues are nonempty, return NULL.
|
|
if (firstnonemptyq < 0)
|
|
{
|
|
return null;
|
|
}
|
|
|
|
this.count--;
|
|
|
|
// Find the first triangle of the highest-priority queue.
|
|
BadTriangle result = queuefront[firstnonemptyq];
|
|
// Remove the triangle from the queue.
|
|
queuefront[firstnonemptyq] = result.next;
|
|
// If this queue is now empty, note the new highest-priority
|
|
// nonempty queue.
|
|
if (result == queuetail[firstnonemptyq])
|
|
{
|
|
firstnonemptyq = nextnonemptyq[firstnonemptyq];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
}
|
|
}
|