// ----------------------------------------------------------------------- // // Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html // Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/ // // ----------------------------------------------------------------------- namespace TriangleNet.Meshing.Data { using TriangleNet.Geometry; using TriangleNet.Topology; /// /// A (priority) queue for bad triangles. /// /// // The queue is actually a set of 4096 queues. I use multiple queues to // give priority to smaller angles. I originally implemented a heap, but // the queues are faster by a larger margin than I'd suspected. /// class BadTriQueue { const double SQRT2 = 1.4142135623730950488016887242096980785696718753769480732; public int Count { get { return this.count; } } // Variables that maintain the bad triangle queues. The queues are // ordered from 4095 (highest priority) to 0 (lowest priority). BadTriangle[] queuefront; BadTriangle[] queuetail; int[] nextnonemptyq; int firstnonemptyq; int count; public BadTriQueue() { queuefront = new BadTriangle[4096]; queuetail = new BadTriangle[4096]; nextnonemptyq = new int[4096]; firstnonemptyq = -1; count = 0; } /// /// Add a bad triangle data structure to the end of a queue. /// /// The bad triangle to enqueue. public void Enqueue(BadTriangle badtri) { double length, multiplier; int exponent, expincrement; int queuenumber; int posexponent; int i; this.count++; // Determine the appropriate queue to put the bad triangle into. // Recall that the key is the square of its shortest edge length. if (badtri.key >= 1.0) { length = badtri.key; posexponent = 1; } else { // 'badtri.key' is 2.0 to a negative exponent, so we'll record that // fact and use the reciprocal of 'badtri.key', which is > 1.0. length = 1.0 / badtri.key; posexponent = 0; } // 'length' is approximately 2.0 to what exponent? The following code // determines the answer in time logarithmic in the exponent. exponent = 0; while (length > 2.0) { // Find an approximation by repeated squaring of two. expincrement = 1; multiplier = 0.5; while (length * multiplier * multiplier > 1.0) { expincrement *= 2; multiplier *= multiplier; } // Reduce the value of 'length', then iterate if necessary. exponent += expincrement; length *= multiplier; } // 'length' is approximately squareroot(2.0) to what exponent? exponent = 2 * exponent + (length > SQRT2 ? 1 : 0); // 'exponent' is now in the range 0...2047 for IEEE double precision. // Choose a queue in the range 0...4095. The shortest edges have the // highest priority (queue 4095). if (posexponent > 0) { queuenumber = 2047 - exponent; } else { queuenumber = 2048 + exponent; } // Are we inserting into an empty queue? if (queuefront[queuenumber] == null) { // Yes, we are inserting into an empty queue. // Will this become the highest-priority queue? if (queuenumber > firstnonemptyq) { // Yes, this is the highest-priority queue. nextnonemptyq[queuenumber] = firstnonemptyq; firstnonemptyq = queuenumber; } else { // No, this is not the highest-priority queue. // Find the queue with next higher priority. i = queuenumber + 1; while (queuefront[i] == null) { i++; } // Mark the newly nonempty queue as following a higher-priority queue. nextnonemptyq[queuenumber] = nextnonemptyq[i]; nextnonemptyq[i] = queuenumber; } // Put the bad triangle at the beginning of the (empty) queue. queuefront[queuenumber] = badtri; } else { // Add the bad triangle to the end of an already nonempty queue. queuetail[queuenumber].next = badtri; } // Maintain a pointer to the last triangle of the queue. queuetail[queuenumber] = badtri; // Newly enqueued bad triangle has no successor in the queue. badtri.next = null; } /// /// Add a bad triangle to the end of a queue. /// /// /// /// /// /// public void Enqueue(ref Otri enqtri, double minedge, Vertex apex, Vertex org, Vertex dest) { // Allocate space for the bad triangle. BadTriangle newbad = new BadTriangle(); newbad.poortri = enqtri; newbad.key = minedge; newbad.apex = apex; newbad.org = org; newbad.dest = dest; Enqueue(newbad); } /// /// Remove a triangle from the front of the queue. /// /// public BadTriangle Dequeue() { // If no queues are nonempty, return NULL. if (firstnonemptyq < 0) { return null; } this.count--; // Find the first triangle of the highest-priority queue. BadTriangle result = queuefront[firstnonemptyq]; // Remove the triangle from the queue. queuefront[firstnonemptyq] = result.next; // If this queue is now empty, note the new highest-priority // nonempty queue. if (result == queuetail[firstnonemptyq]) { firstnonemptyq = nextnonemptyq[firstnonemptyq]; } return result; } } }