rj-action-library/External/Triangle.NET/Triangle/Tools/Interpolation.cs

106 lines
3.8 KiB
C#

namespace TriangleNet.Tools
{
using TriangleNet.Geometry;
public static class Interpolation
{
#if USE_ATTRIBS
/// <summary>
/// Linear interpolation of vertex attributes.
/// </summary>
/// <param name="vertex">The interpolation vertex.</param>
/// <param name="triangle">The triangle containing the vertex.</param>
/// <param name="n">The number of vertex attributes.</param>
/// <remarks>
/// The vertex is expected to lie inside the triangle.
/// </remarks>
public static void InterpolateAttributes(Vertex vertex, ITriangle triangle, int n)
{
Vertex org = triangle.GetVertex(0);
Vertex dest = triangle.GetVertex(1);
Vertex apex = triangle.GetVertex(2);
double xdo, ydo, xao, yao;
double denominator;
double dx, dy;
double xi, eta;
// Compute the circumcenter of the triangle.
xdo = dest.x - org.x;
ydo = dest.y - org.y;
xao = apex.x - org.x;
yao = apex.y - org.y;
denominator = 0.5 / (xdo * yao - xao * ydo);
//dx = (yao * dodist - ydo * aodist) * denominator;
//dy = (xdo * aodist - xao * dodist) * denominator;
dx = vertex.x - org.x;
dy = vertex.y - org.y;
// To interpolate vertex attributes for the new vertex, define a
// coordinate system with a xi-axis directed from the triangle's
// origin to its destination, and an eta-axis, directed from its
// origin to its apex.
xi = (yao * dx - xao * dy) * (2.0 * denominator);
eta = (xdo * dy - ydo * dx) * (2.0 * denominator);
for (int i = 0; i < n; i++)
{
// Interpolate the vertex attributes.
vertex.attributes[i] = org.attributes[i]
+ xi * (dest.attributes[i] - org.attributes[i])
+ eta * (apex.attributes[i] - org.attributes[i]);
}
}
#endif
#if USE_Z
/// <summary>
/// Linear interpolation of a scalar value.
/// </summary>
/// <param name="p">The interpolation point.</param>
/// <param name="triangle">The triangle containing the point.</param>
/// <remarks>
/// The point is expected to lie inside the triangle.
/// </remarks>
public static void InterpolateZ(Point p, ITriangle triangle)
{
Vertex org = triangle.GetVertex(0);
Vertex dest = triangle.GetVertex(1);
Vertex apex = triangle.GetVertex(2);
double xdo, ydo, xao, yao;
double denominator;
double dx, dy;
double xi, eta;
// Compute the circumcenter of the triangle.
xdo = dest.x - org.x;
ydo = dest.y - org.y;
xao = apex.x - org.x;
yao = apex.y - org.y;
denominator = 0.5 / (xdo * yao - xao * ydo);
//dx = (yao * dodist - ydo * aodist) * denominator;
//dy = (xdo * aodist - xao * dodist) * denominator;
dx = p.x - org.x;
dy = p.y - org.y;
// To interpolate z value for the given point inserted, define a
// coordinate system with a xi-axis, directed from the triangle's
// origin to its destination, and an eta-axis, directed from its
// origin to its apex.
xi = (yao * dx - xao * dy) * (2.0 * denominator);
eta = (xdo * dy - ydo * dx) * (2.0 * denominator);
p.z = org.z + xi * (dest.z - org.z) + eta * (apex.z - org.z);
}
#endif
}
}