rj-action-library/Runtime/Shading/Library/Transform.gdshaderinc

227 lines
4.4 KiB
Plaintext

vec3 localToWorld( vec3 _VERTEX, mat4 _MODEL_MATRIX )
{
return ( _MODEL_MATRIX * vec4( _VERTEX, 1.0 ) ).xyz;
}
vec3 localToWorldDirection( vec3 _VERTEX, mat4 _MODEL_MATRIX )
{
mat4 mw = _MODEL_MATRIX;
mw[ 3 ][ 0 ] = 0.0;
mw[ 3 ][ 1 ] = 0.0;
mw[ 3 ][ 2 ] = 0.0;
mw[ 3 ][ 3 ] = 1.0;
return ( mw * vec4( _VERTEX, 1.0 ) ).xyz;
}
vec3 worldToLocal( vec3 _VERTEX, mat4 _MODEL_MATRIX )
{
return ( inverse( _MODEL_MATRIX ) * vec4( _VERTEX, 1.0 ) ).xyz;
}
vec3 extractScale( mat3 _MODEL_NORMAL_MATRIX )
{
mat3 m = _MODEL_NORMAL_MATRIX;
float x = length( vec3( m[ 0 ][ 0 ], m[ 1 ][ 0 ], m[ 2 ][ 0 ] ) );
float y = length( vec3( m[ 0 ][ 1 ], m[ 1 ][ 1 ], m[ 2 ][ 1 ] ) );
float z = length( vec3( m[ 0 ][ 2 ], m[ 1 ][ 2 ], m[ 2 ][ 2 ] ) );
return vec3( x, y, z );
}
vec2 tilingOffset( vec2 uv, vec4 tilingOffset )
{
uv *= tilingOffset.xy;
uv += tilingOffset.zw;
return uv;
}
vec2 tilingOffsetRepeat( vec2 uv, vec4 tilingOffset )
{
uv *= tilingOffset.xy;
uv += tilingOffset.zw;
return mod( uv, vec2(1,1) );
}
vec3 billboardWorldOffset( vec2 _UV, mat4 _INV_VIEW_MATRIX, mat4 _MODEL_MATRIX )
{
vec2 mappedUV = mix( vec2(-1,1), vec2( 1, -1 ), _UV );
vec4 offset = vec4( mappedUV.x, mappedUV.y, 0, 0 );
offset = _INV_VIEW_MATRIX * offset;
mat4 mw = _MODEL_MATRIX;
mw[ 3 ][ 0 ] = 0.0;
mw[ 3 ][ 1 ] = 0.0;
mw[ 3 ][ 2 ] = 0.0;
vec3 worldOffset = worldToLocal( offset.xyz, mw );
worldOffset = normalize( worldOffset );
return worldOffset;
}
vec2 rotate_v2( vec2 uv, float angle )
{
float s = sin( angle );
float c = cos( angle );
float x = uv.x;
float y = uv.y;
uv.x = c * x - s * y;
uv.y = s * x + c * y;
return uv;
}
vec2 rotateAround_v2( vec2 uv, float angle, vec2 pivot )
{
uv -= pivot;
uv = rotate_v2( uv, angle );
uv += pivot;
return uv;
}
vec2 rotateAroundTexture_v2( vec2 uv, float angle, vec2 pivot, vec2 textureSize )
{
vec2 p = uv;
float aspect = textureSize.x / textureSize.y;
float cosA = cos( angle );
float sinA = sin( angle );
mat2 rotMat = mat2(
vec2( cosA, -sinA ),
vec2( sinA, cosA )
);
rotMat = mat2(
vec2( cosA, -sinA ),
vec2( sinA, cosA )
);
p -= pivot;
p.y *= 1.0 / aspect;
p *= rotMat;
p.y *= aspect;
p += pivot;
return p;
}
vec3 cameraWorldPosition( mat4 _INV_VIEW_MATRIX )
{
return (_INV_VIEW_MATRIX * vec4(vec3(0.0), 1.0)).xyz;
}
vec3 cameraWorldForward( mat4 _INV_VIEW_MATRIX )
{
vec3 pos = cameraWorldPosition( _INV_VIEW_MATRIX );
return normalize( (_INV_VIEW_MATRIX * vec4( vec3(0.0,0.0,1.0), 1.0)).xyz - pos );
}
mat3 identity_m3()
{
return mat3(
vec3( 1, 0, 0 ),
vec3( 0, 1, 0 ),
vec3( 0, 0, 1 )
);
}
mat3 translate_m3( vec2 translation )
{
return mat3(
vec3( 1, 0, translation.x ),
vec3( 0, 1, translation.y ),
vec3( 0, 0, 1 )
);
}
mat3 scale_m3( vec2 scale )
{
return mat3(
vec3( scale.x, 0, 0 ),
vec3( 0, scale.y, 0 ),
vec3( 0, 0, 1 )
);
}
mat3 scalePivot_m3( vec2 scale, vec2 pivot )
{
return translate_m3( -pivot ) * scale_m3( scale ) * translate_m3( pivot );
}
mat3 rotate_m3( float radiansAngle )
{
float c = cos( radiansAngle );
float s = sin( radiansAngle );
return mat3(
vec3( c, -s, 0 ),
vec3( s, c, 0 ),
vec3( 0, 0, 1 )
);
}
mat3 rotatePivot_m3( float radiansAngle, vec2 pivot )
{
return translate_m3( -pivot ) * rotate_m3( radiansAngle ) * translate_m3( pivot );
}
mat3 rotatePivotAspect_m3( float radiansAngle, vec2 pivot, float aspect )
{
return translate_m3( -pivot ) *
scale_m3( vec2( 1, 1.0/aspect ) ) *
rotate_m3( radiansAngle ) *
scale_m3( vec2( 1, aspect ) ) *
translate_m3( pivot );
}
vec2 applyMatrix_m3v2( mat3 matrix, vec2 point )
{
float x = point.x;
float y = point.y;
// float ox = matrix[ 0 ] * x + matrix[ 3 ] * y + matrix[ 6 ];
// float oy = matrix[ 1 ] * x + matrix[ 4 ] * y + matrix[ 7 ];
// 0 1 2 0 3 6
// 3 4 5 1 4 7
// 6 7 8 2 5 8
vec3 mx = matrix[ 0 ];
vec3 my = matrix[ 1 ];
float ox = mx.x * x + mx.y * y + mx.z;
float oy = my.x * x + my.y * y + my.z;
return vec2( ox, oy );
}
vec2 applyMatrixBase_m3v2( mat3 matrix, vec2 point )
{
float x = point.x;
float y = point.y;
vec3 mx = matrix[ 0 ];
vec3 my = matrix[ 1 ];
float ox = mx.x * x + mx.y * y;
float oy = my.x * x + my.y * y;
return vec2( ox, oy );
}