rj-action-library/External/Triangle.NET/Triangle/Geometry/Contour.cs

248 lines
8.0 KiB
C#

// -----------------------------------------------------------------------
// <copyright file="Contour.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace TriangleNet.Geometry
{
using System;
using System.Linq;
using System.Collections.Generic;
public class Contour
{
int marker;
bool convex;
/// <summary>
/// Gets or sets the list of points making up the contour.
/// </summary>
public List<Vertex> Points { get; set; }
/// <summary>
/// Initializes a new instance of the <see cref="Contour" /> class.
/// </summary>
/// <param name="points">The points that make up the contour.</param>
public Contour(IEnumerable<Vertex> points)
: this(points, 0, false)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Contour" /> class.
/// </summary>
/// <param name="points">The points that make up the contour.</param>
/// <param name="marker">Contour marker.</param>
public Contour(IEnumerable<Vertex> points, int marker)
: this(points, marker, false)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Contour" /> class.
/// </summary>
/// <param name="points">The points that make up the contour.</param>
/// <param name="marker">Contour marker.</param>
/// <param name="convex">The hole is convex.</param>
public Contour(IEnumerable<Vertex> points, int marker, bool convex)
{
AddPoints(points);
this.marker = marker;
this.convex = convex;
}
public List<ISegment> GetSegments()
{
var segments = new List<ISegment>();
var p = this.Points;
int count = p.Count - 1;
for (int i = 0; i < count; i++)
{
// Add segments to polygon.
segments.Add(new Segment(p[i], p[i + 1], marker));
}
// Close the contour.
segments.Add(new Segment(p[count], p[0], marker));
return segments;
}
/// <summary>
/// Try to find a point inside the contour.
/// </summary>
/// <param name="limit">The number of iterations on each segment (default = 5).</param>
/// <param name="eps">Threshold for co-linear points (default = 2e-5).</param>
/// <returns>Point inside the contour</returns>
/// <exception cref="Exception">Throws if no point could be found.</exception>
/// <remarks>
/// For each corner (index i) of the contour, the 3 points with indices i-1, i and i+1
/// are considered and a search on the line through the corner vertex is started (either
/// on the bisecting line, or, if <see cref="IPredicates.CounterClockwise"/> is less than
/// eps, on the perpendicular line.
/// A given number of points will be tested (limit), while the distance to the contour
/// boundary will be reduced in each iteration (with a factor 1 / 2^i, i = 1 ... limit).
/// </remarks>
public Point FindInteriorPoint(int limit = 5, double eps = 2e-5)
{
if (convex)
{
int count = this.Points.Count;
var point = new Point(0.0, 0.0);
for (int i = 0; i < count; i++)
{
point.x += this.Points[i].x;
point.y += this.Points[i].y;
}
// If the contour is convex, use its centroid.
point.x /= count;
point.y /= count;
return point;
}
return FindPointInPolygon(this.Points, limit, eps);
}
private void AddPoints(IEnumerable<Vertex> points)
{
this.Points = new List<Vertex>(points);
int count = Points.Count - 1;
// Check if first vertex equals last vertex.
if (Points[0] == Points[count])
{
Points.RemoveAt(count);
}
}
#region Helper methods
private static Point FindPointInPolygon(List<Vertex> contour, int limit, double eps)
{
var bounds = new Rectangle();
bounds.Expand(contour.Cast<Point>());
int length = contour.Count;
var test = new Point();
Point a, b, c; // Current corner points.
double bx, by;
double dx, dy;
double h;
var predicates = new RobustPredicates();
a = contour[0];
b = contour[1];
for (int i = 0; i < length; i++)
{
c = contour[(i + 2) % length];
// Corner point.
bx = b.x;
by = b.y;
// NOTE: if we knew the contour points were in counterclockwise order, we
// could skip concave corners and search only in one direction.
h = predicates.CounterClockwise(a, b, c);
if (Math.Abs(h) < eps)
{
// Points are nearly co-linear. Use perpendicular direction.
dx = (c.y - a.y) / 2;
dy = (a.x - c.x) / 2;
}
else
{
// Direction [midpoint(a-c) -> corner point]
dx = (a.x + c.x) / 2 - bx;
dy = (a.y + c.y) / 2 - by;
}
// Move around the contour.
a = b;
b = c;
h = 1.0;
for (int j = 0; j < limit; j++)
{
// Search in direction.
test.x = bx + dx * h;
test.y = by + dy * h;
if (bounds.Contains(test) && IsPointInPolygon(test, contour))
{
return test;
}
// Search in opposite direction (see NOTE above).
test.x = bx - dx * h;
test.y = by - dy * h;
if (bounds.Contains(test) && IsPointInPolygon(test, contour))
{
return test;
}
h = h / 2;
}
}
throw new Exception();
}
/// <summary>
/// Return true if the given point is inside the polygon, or false if it is not.
/// </summary>
/// <param name="point">The point to check.</param>
/// <param name="poly">The polygon (list of contour points).</param>
/// <returns></returns>
/// <remarks>
/// WARNING: If the point is exactly on the edge of the polygon, then the function
/// may return true or false.
///
/// See http://alienryderflex.com/polygon/
/// </remarks>
private static bool IsPointInPolygon(Point point, List<Vertex> poly)
{
bool inside = false;
double x = point.x;
double y = point.y;
int count = poly.Count;
for (int i = 0, j = count - 1; i < count; i++)
{
if (((poly[i].y < y && poly[j].y >= y) || (poly[j].y < y && poly[i].y >= y))
&& (poly[i].x <= x || poly[j].x <= x))
{
inside ^= (poly[i].x + (y - poly[i].y) / (poly[j].y - poly[i].y) * (poly[j].x - poly[i].x) < x);
}
j = i;
}
return inside;
}
#endregion
}
}