rj-action-library/External/Triangle.NET/Triangle/Meshing/Algorithm/Incremental.cs

192 lines
7.5 KiB
C#

// -----------------------------------------------------------------------
// <copyright file="Incremental.cs">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace TriangleNet.Meshing.Algorithm
{
using System.Collections.Generic;
using TriangleNet.Topology;
using TriangleNet.Geometry;
/// <summary>
/// Builds a delaunay triangulation using the incremental algorithm.
/// </summary>
public class Incremental : ITriangulator
{
Mesh mesh;
/// <summary>
/// Form a Delaunay triangulation by incrementally inserting vertices.
/// </summary>
/// <returns>Returns the number of edges on the convex hull of the
/// triangulation.</returns>
public IMesh Triangulate(IList<Vertex> points, Configuration config)
{
this.mesh = new Mesh(config);
this.mesh.TransferNodes(points);
Otri starttri = new Otri();
// Create a triangular bounding box.
GetBoundingBox();
foreach (var v in mesh.vertices.Values)
{
starttri.tri = mesh.dummytri;
Osub tmp = default(Osub);
if (mesh.InsertVertex(v, ref starttri, ref tmp, false, false) == InsertVertexResult.Duplicate)
{
if (Log.Verbose)
{
Log.Instance.Warning("A duplicate vertex appeared and was ignored.",
"Incremental.Triangulate()");
}
v.type = VertexType.UndeadVertex;
mesh.undeads++;
}
}
// Remove the bounding box.
this.mesh.hullsize = RemoveBox();
return this.mesh;
}
/// <summary>
/// Form an "infinite" bounding triangle to insert vertices into.
/// </summary>
/// <remarks>
/// The vertices at "infinity" are assigned finite coordinates, which are
/// used by the point location routines, but (mostly) ignored by the
/// Delaunay edge flip routines.
/// </remarks>
void GetBoundingBox()
{
Otri inftri = default(Otri); // Handle for the triangular bounding box.
Rectangle box = mesh.bounds;
// Find the width (or height, whichever is larger) of the triangulation.
double width = box.Width;
if (box.Height > width)
{
width = box.Height;
}
if (width == 0.0)
{
width = 1.0;
}
// Create the vertices of the bounding box.
mesh.infvertex1 = new Vertex(box.Left - 50.0 * width, box.Bottom - 40.0 * width);
mesh.infvertex2 = new Vertex(box.Right + 50.0 * width, box.Bottom - 40.0 * width);
mesh.infvertex3 = new Vertex(0.5 * (box.Left + box.Right), box.Top + 60.0 * width);
// Create the bounding box.
mesh.MakeTriangle(ref inftri);
inftri.SetOrg(mesh.infvertex1);
inftri.SetDest(mesh.infvertex2);
inftri.SetApex(mesh.infvertex3);
// Link dummytri to the bounding box so we can always find an
// edge to begin searching (point location) from.
mesh.dummytri.neighbors[0] = inftri;
}
/// <summary>
/// Remove the "infinite" bounding triangle, setting boundary markers as appropriate.
/// </summary>
/// <returns>Returns the number of edges on the convex hull of the triangulation.</returns>
/// <remarks>
/// The triangular bounding box has three boundary triangles (one for each
/// side of the bounding box), and a bunch of triangles fanning out from
/// the three bounding box vertices (one triangle for each edge of the
/// convex hull of the inner mesh). This routine removes these triangles.
/// </remarks>
int RemoveBox()
{
Otri deadtriangle = default(Otri);
Otri searchedge = default(Otri);
Otri checkedge = default(Otri);
Otri nextedge = default(Otri), finaledge = default(Otri), dissolveedge = default(Otri);
Vertex markorg;
int hullsize;
bool noPoly = !mesh.behavior.Poly;
// Find a boundary triangle.
nextedge.tri = mesh.dummytri;
nextedge.orient = 0;
nextedge.Sym();
// Mark a place to stop.
nextedge.Lprev(ref finaledge);
nextedge.Lnext();
nextedge.Sym();
// Find a triangle (on the boundary of the vertex set) that isn't
// a bounding box triangle.
nextedge.Lprev(ref searchedge);
searchedge.Sym();
// Check whether nextedge is another boundary triangle
// adjacent to the first one.
nextedge.Lnext(ref checkedge);
checkedge.Sym();
if (checkedge.tri.id == Mesh.DUMMY)
{
// Go on to the next triangle. There are only three boundary
// triangles, and this next triangle cannot be the third one,
// so it's safe to stop here.
searchedge.Lprev();
searchedge.Sym();
}
// Find a new boundary edge to search from, as the current search
// edge lies on a bounding box triangle and will be deleted.
mesh.dummytri.neighbors[0] = searchedge;
hullsize = -2;
while (!nextedge.Equals(finaledge))
{
hullsize++;
nextedge.Lprev(ref dissolveedge);
dissolveedge.Sym();
// If not using a PSLG, the vertices should be marked now.
// (If using a PSLG, markhull() will do the job.)
if (noPoly)
{
// Be careful! One must check for the case where all the input
// vertices are collinear, and thus all the triangles are part of
// the bounding box. Otherwise, the setvertexmark() call below
// will cause a bad pointer reference.
if (dissolveedge.tri.id != Mesh.DUMMY)
{
markorg = dissolveedge.Org();
if (markorg.label == 0)
{
markorg.label = 1;
}
}
}
// Disconnect the bounding box triangle from the mesh triangle.
dissolveedge.Dissolve(mesh.dummytri);
nextedge.Lnext(ref deadtriangle);
deadtriangle.Sym(ref nextedge);
// Get rid of the bounding box triangle.
mesh.TriangleDealloc(deadtriangle.tri);
// Do we need to turn the corner?
if (nextedge.tri.id == Mesh.DUMMY)
{
// Turn the corner.
dissolveedge.Copy(ref nextedge);
}
}
mesh.TriangleDealloc(finaledge.tri);
return hullsize;
}
}
}