695 lines
32 KiB
C#
695 lines
32 KiB
C#
// -----------------------------------------------------------------------
|
|
// <copyright file="Dwyer.cs">
|
|
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
|
|
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
|
|
// </copyright>
|
|
// -----------------------------------------------------------------------
|
|
|
|
namespace TriangleNet.Meshing.Algorithm
|
|
{
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using TriangleNet.Geometry;
|
|
using TriangleNet.Tools;
|
|
using TriangleNet.Topology;
|
|
|
|
/// <summary>
|
|
/// Builds a delaunay triangulation using the divide-and-conquer algorithm.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// The divide-and-conquer bounding box
|
|
///
|
|
/// I originally implemented the divide-and-conquer and incremental Delaunay
|
|
/// triangulations using the edge-based data structure presented by Guibas
|
|
/// and Stolfi. Switching to a triangle-based data structure doubled the
|
|
/// speed. However, I had to think of a few extra tricks to maintain the
|
|
/// elegance of the original algorithms.
|
|
///
|
|
/// The "bounding box" used by my variant of the divide-and-conquer
|
|
/// algorithm uses one triangle for each edge of the convex hull of the
|
|
/// triangulation. These bounding triangles all share a common apical
|
|
/// vertex, which is represented by NULL and which represents nothing.
|
|
/// The bounding triangles are linked in a circular fan about this NULL
|
|
/// vertex, and the edges on the convex hull of the triangulation appear
|
|
/// opposite the NULL vertex. You might find it easiest to imagine that
|
|
/// the NULL vertex is a point in 3D space behind the center of the
|
|
/// triangulation, and that the bounding triangles form a sort of cone.
|
|
///
|
|
/// This bounding box makes it easy to represent degenerate cases. For
|
|
/// instance, the triangulation of two vertices is a single edge. This edge
|
|
/// is represented by two bounding box triangles, one on each "side" of the
|
|
/// edge. These triangles are also linked together in a fan about the NULL
|
|
/// vertex.
|
|
///
|
|
/// The bounding box also makes it easy to traverse the convex hull, as the
|
|
/// divide-and-conquer algorithm needs to do.
|
|
/// </remarks>
|
|
public class Dwyer : ITriangulator
|
|
{
|
|
// Random is not threadsafe, so don't make this static.
|
|
// Random rand = new Random(DateTime.Now.Millisecond);
|
|
|
|
IPredicates predicates;
|
|
|
|
public bool UseDwyer = true;
|
|
|
|
Vertex[] sortarray;
|
|
Mesh mesh;
|
|
|
|
/// <summary>
|
|
/// Form a Delaunay triangulation by the divide-and-conquer method.
|
|
/// </summary>
|
|
/// <returns></returns>
|
|
/// <remarks>
|
|
/// Sorts the vertices, calls a recursive procedure to triangulate them, and
|
|
/// removes the bounding box, setting boundary markers as appropriate.
|
|
/// </remarks>
|
|
public IMesh Triangulate(IList<Vertex> points, Configuration config)
|
|
{
|
|
this.predicates = config.Predicates();
|
|
|
|
this.mesh = new Mesh(config);
|
|
this.mesh.TransferNodes(points);
|
|
|
|
Otri hullleft = default(Otri), hullright = default(Otri);
|
|
int i, j, n = points.Count;
|
|
|
|
// Allocate an array of pointers to vertices for sorting.
|
|
this.sortarray = new Vertex[n];
|
|
i = 0;
|
|
foreach (var v in points)
|
|
{
|
|
sortarray[i++] = v;
|
|
}
|
|
|
|
// Sort the vertices.
|
|
VertexSorter.Sort(sortarray);
|
|
|
|
// Discard duplicate vertices, which can really mess up the algorithm.
|
|
i = 0;
|
|
for (j = 1; j < n; j++)
|
|
{
|
|
if ((sortarray[i].x == sortarray[j].x) && (sortarray[i].y == sortarray[j].y))
|
|
{
|
|
if (Log.Verbose)
|
|
{
|
|
Log.Instance.Warning(
|
|
String.Format("A duplicate vertex appeared and was ignored (ID {0}).", sortarray[j].id),
|
|
"Dwyer.Triangulate()");
|
|
}
|
|
sortarray[j].type = VertexType.UndeadVertex;
|
|
mesh.undeads++;
|
|
}
|
|
else
|
|
{
|
|
i++;
|
|
sortarray[i] = sortarray[j];
|
|
}
|
|
}
|
|
i++;
|
|
if (UseDwyer)
|
|
{
|
|
// Re-sort the array of vertices to accommodate alternating cuts.
|
|
VertexSorter.Alternate(sortarray, i);
|
|
}
|
|
|
|
// Form the Delaunay triangulation.
|
|
DivconqRecurse(0, i - 1, 0, ref hullleft, ref hullright);
|
|
|
|
this.mesh.hullsize = RemoveGhosts(ref hullleft);
|
|
|
|
return this.mesh;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Merge two adjacent Delaunay triangulations into a single Delaunay triangulation.
|
|
/// </summary>
|
|
/// <param name="farleft">Bounding triangles of the left triangulation.</param>
|
|
/// <param name="innerleft">Bounding triangles of the left triangulation.</param>
|
|
/// <param name="innerright">Bounding triangles of the right triangulation.</param>
|
|
/// <param name="farright">Bounding triangles of the right triangulation.</param>
|
|
/// <param name="axis"></param>
|
|
/// <remarks>
|
|
/// This is similar to the algorithm given by Guibas and Stolfi, but uses
|
|
/// a triangle-based, rather than edge-based, data structure.
|
|
///
|
|
/// The algorithm walks up the gap between the two triangulations, knitting
|
|
/// them together. As they are merged, some of their bounding triangles
|
|
/// are converted into real triangles of the triangulation. The procedure
|
|
/// pulls each hull's bounding triangles apart, then knits them together
|
|
/// like the teeth of two gears. The Delaunay property determines, at each
|
|
/// step, whether the next "tooth" is a bounding triangle of the left hull
|
|
/// or the right. When a bounding triangle becomes real, its apex is
|
|
/// changed from NULL to a real vertex.
|
|
///
|
|
/// Only two new triangles need to be allocated. These become new bounding
|
|
/// triangles at the top and bottom of the seam. They are used to connect
|
|
/// the remaining bounding triangles (those that have not been converted
|
|
/// into real triangles) into a single fan.
|
|
///
|
|
/// On entry, 'farleft' and 'innerleft' are bounding triangles of the left
|
|
/// triangulation. The origin of 'farleft' is the leftmost vertex, and
|
|
/// the destination of 'innerleft' is the rightmost vertex of the
|
|
/// triangulation. Similarly, 'innerright' and 'farright' are bounding
|
|
/// triangles of the right triangulation. The origin of 'innerright' and
|
|
/// destination of 'farright' are the leftmost and rightmost vertices.
|
|
///
|
|
/// On completion, the origin of 'farleft' is the leftmost vertex of the
|
|
/// merged triangulation, and the destination of 'farright' is the rightmost
|
|
/// vertex.
|
|
/// </remarks>
|
|
void MergeHulls(ref Otri farleft, ref Otri innerleft, ref Otri innerright,
|
|
ref Otri farright, int axis)
|
|
{
|
|
Otri leftcand = default(Otri), rightcand = default(Otri);
|
|
Otri nextedge = default(Otri);
|
|
Otri sidecasing = default(Otri), topcasing = default(Otri), outercasing = default(Otri);
|
|
Otri checkedge = default(Otri);
|
|
Otri baseedge = default(Otri);
|
|
Vertex innerleftdest;
|
|
Vertex innerrightorg;
|
|
Vertex innerleftapex, innerrightapex;
|
|
Vertex farleftpt, farrightpt;
|
|
Vertex farleftapex, farrightapex;
|
|
Vertex lowerleft, lowerright;
|
|
Vertex upperleft, upperright;
|
|
Vertex nextapex;
|
|
Vertex checkvertex;
|
|
bool changemade;
|
|
bool badedge;
|
|
bool leftfinished, rightfinished;
|
|
|
|
innerleftdest = innerleft.Dest();
|
|
innerleftapex = innerleft.Apex();
|
|
innerrightorg = innerright.Org();
|
|
innerrightapex = innerright.Apex();
|
|
// Special treatment for horizontal cuts.
|
|
if (UseDwyer && (axis == 1))
|
|
{
|
|
farleftpt = farleft.Org();
|
|
farleftapex = farleft.Apex();
|
|
farrightpt = farright.Dest();
|
|
farrightapex = farright.Apex();
|
|
// The pointers to the extremal vertices are shifted to point to the
|
|
// topmost and bottommost vertex of each hull, rather than the
|
|
// leftmost and rightmost vertices.
|
|
while (farleftapex.y < farleftpt.y)
|
|
{
|
|
farleft.Lnext();
|
|
farleft.Sym();
|
|
farleftpt = farleftapex;
|
|
farleftapex = farleft.Apex();
|
|
}
|
|
innerleft.Sym(ref checkedge);
|
|
checkvertex = checkedge.Apex();
|
|
while (checkvertex.y > innerleftdest.y)
|
|
{
|
|
checkedge.Lnext(ref innerleft);
|
|
innerleftapex = innerleftdest;
|
|
innerleftdest = checkvertex;
|
|
innerleft.Sym(ref checkedge);
|
|
checkvertex = checkedge.Apex();
|
|
}
|
|
while (innerrightapex.y < innerrightorg.y)
|
|
{
|
|
innerright.Lnext();
|
|
innerright.Sym();
|
|
innerrightorg = innerrightapex;
|
|
innerrightapex = innerright.Apex();
|
|
}
|
|
farright.Sym(ref checkedge);
|
|
checkvertex = checkedge.Apex();
|
|
while (checkvertex.y > farrightpt.y)
|
|
{
|
|
checkedge.Lnext(ref farright);
|
|
farrightapex = farrightpt;
|
|
farrightpt = checkvertex;
|
|
farright.Sym(ref checkedge);
|
|
checkvertex = checkedge.Apex();
|
|
}
|
|
}
|
|
// Find a line tangent to and below both hulls.
|
|
do
|
|
{
|
|
changemade = false;
|
|
// Make innerleftdest the "bottommost" vertex of the left hull.
|
|
if (predicates.CounterClockwise(innerleftdest, innerleftapex, innerrightorg) > 0.0)
|
|
{
|
|
innerleft.Lprev();
|
|
innerleft.Sym();
|
|
innerleftdest = innerleftapex;
|
|
innerleftapex = innerleft.Apex();
|
|
changemade = true;
|
|
}
|
|
// Make innerrightorg the "bottommost" vertex of the right hull.
|
|
if (predicates.CounterClockwise(innerrightapex, innerrightorg, innerleftdest) > 0.0)
|
|
{
|
|
innerright.Lnext();
|
|
innerright.Sym();
|
|
innerrightorg = innerrightapex;
|
|
innerrightapex = innerright.Apex();
|
|
changemade = true;
|
|
}
|
|
} while (changemade);
|
|
|
|
// Find the two candidates to be the next "gear tooth."
|
|
innerleft.Sym(ref leftcand);
|
|
innerright.Sym(ref rightcand);
|
|
// Create the bottom new bounding triangle.
|
|
mesh.MakeTriangle(ref baseedge);
|
|
// Connect it to the bounding boxes of the left and right triangulations.
|
|
baseedge.Bond(ref innerleft);
|
|
baseedge.Lnext();
|
|
baseedge.Bond(ref innerright);
|
|
baseedge.Lnext();
|
|
baseedge.SetOrg(innerrightorg);
|
|
baseedge.SetDest(innerleftdest);
|
|
// Apex is intentionally left NULL.
|
|
|
|
// Fix the extreme triangles if necessary.
|
|
farleftpt = farleft.Org();
|
|
if (innerleftdest == farleftpt)
|
|
{
|
|
baseedge.Lnext(ref farleft);
|
|
}
|
|
farrightpt = farright.Dest();
|
|
if (innerrightorg == farrightpt)
|
|
{
|
|
baseedge.Lprev(ref farright);
|
|
}
|
|
// The vertices of the current knitting edge.
|
|
lowerleft = innerleftdest;
|
|
lowerright = innerrightorg;
|
|
// The candidate vertices for knitting.
|
|
upperleft = leftcand.Apex();
|
|
upperright = rightcand.Apex();
|
|
// Walk up the gap between the two triangulations, knitting them together.
|
|
while (true)
|
|
{
|
|
// Have we reached the top? (This isn't quite the right question,
|
|
// because even though the left triangulation might seem finished now,
|
|
// moving up on the right triangulation might reveal a new vertex of
|
|
// the left triangulation. And vice-versa.)
|
|
leftfinished = predicates.CounterClockwise(upperleft, lowerleft, lowerright) <= 0.0;
|
|
rightfinished = predicates.CounterClockwise(upperright, lowerleft, lowerright) <= 0.0;
|
|
if (leftfinished && rightfinished)
|
|
{
|
|
// Create the top new bounding triangle.
|
|
mesh.MakeTriangle(ref nextedge);
|
|
nextedge.SetOrg(lowerleft);
|
|
nextedge.SetDest(lowerright);
|
|
// Apex is intentionally left NULL.
|
|
// Connect it to the bounding boxes of the two triangulations.
|
|
nextedge.Bond(ref baseedge);
|
|
nextedge.Lnext();
|
|
nextedge.Bond(ref rightcand);
|
|
nextedge.Lnext();
|
|
nextedge.Bond(ref leftcand);
|
|
|
|
// Special treatment for horizontal cuts.
|
|
if (UseDwyer && (axis == 1))
|
|
{
|
|
farleftpt = farleft.Org();
|
|
farleftapex = farleft.Apex();
|
|
farrightpt = farright.Dest();
|
|
farrightapex = farright.Apex();
|
|
farleft.Sym(ref checkedge);
|
|
checkvertex = checkedge.Apex();
|
|
// The pointers to the extremal vertices are restored to the
|
|
// leftmost and rightmost vertices (rather than topmost and
|
|
// bottommost).
|
|
while (checkvertex.x < farleftpt.x)
|
|
{
|
|
checkedge.Lprev(ref farleft);
|
|
farleftapex = farleftpt;
|
|
farleftpt = checkvertex;
|
|
farleft.Sym(ref checkedge);
|
|
checkvertex = checkedge.Apex();
|
|
}
|
|
while (farrightapex.x > farrightpt.x)
|
|
{
|
|
farright.Lprev();
|
|
farright.Sym();
|
|
farrightpt = farrightapex;
|
|
farrightapex = farright.Apex();
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
// Consider eliminating edges from the left triangulation.
|
|
if (!leftfinished)
|
|
{
|
|
// What vertex would be exposed if an edge were deleted?
|
|
leftcand.Lprev(ref nextedge);
|
|
nextedge.Sym();
|
|
nextapex = nextedge.Apex();
|
|
// If nextapex is NULL, then no vertex would be exposed; the
|
|
// triangulation would have been eaten right through.
|
|
if (nextapex != null)
|
|
{
|
|
// Check whether the edge is Delaunay.
|
|
badedge = predicates.InCircle(lowerleft, lowerright, upperleft, nextapex) > 0.0;
|
|
while (badedge)
|
|
{
|
|
// Eliminate the edge with an edge flip. As a result, the
|
|
// left triangulation will have one more boundary triangle.
|
|
nextedge.Lnext();
|
|
nextedge.Sym(ref topcasing);
|
|
nextedge.Lnext();
|
|
nextedge.Sym(ref sidecasing);
|
|
nextedge.Bond(ref topcasing);
|
|
leftcand.Bond(ref sidecasing);
|
|
leftcand.Lnext();
|
|
leftcand.Sym(ref outercasing);
|
|
nextedge.Lprev();
|
|
nextedge.Bond(ref outercasing);
|
|
// Correct the vertices to reflect the edge flip.
|
|
leftcand.SetOrg(lowerleft);
|
|
leftcand.SetDest(null);
|
|
leftcand.SetApex(nextapex);
|
|
nextedge.SetOrg(null);
|
|
nextedge.SetDest(upperleft);
|
|
nextedge.SetApex(nextapex);
|
|
// Consider the newly exposed vertex.
|
|
upperleft = nextapex;
|
|
// What vertex would be exposed if another edge were deleted?
|
|
sidecasing.Copy(ref nextedge);
|
|
nextapex = nextedge.Apex();
|
|
if (nextapex != null)
|
|
{
|
|
// Check whether the edge is Delaunay.
|
|
badedge = predicates.InCircle(lowerleft, lowerright, upperleft, nextapex) > 0.0;
|
|
}
|
|
else
|
|
{
|
|
// Avoid eating right through the triangulation.
|
|
badedge = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Consider eliminating edges from the right triangulation.
|
|
if (!rightfinished)
|
|
{
|
|
// What vertex would be exposed if an edge were deleted?
|
|
rightcand.Lnext(ref nextedge);
|
|
nextedge.Sym();
|
|
nextapex = nextedge.Apex();
|
|
// If nextapex is NULL, then no vertex would be exposed; the
|
|
// triangulation would have been eaten right through.
|
|
if (nextapex != null)
|
|
{
|
|
// Check whether the edge is Delaunay.
|
|
badedge = predicates.InCircle(lowerleft, lowerright, upperright, nextapex) > 0.0;
|
|
while (badedge)
|
|
{
|
|
// Eliminate the edge with an edge flip. As a result, the
|
|
// right triangulation will have one more boundary triangle.
|
|
nextedge.Lprev();
|
|
nextedge.Sym(ref topcasing);
|
|
nextedge.Lprev();
|
|
nextedge.Sym(ref sidecasing);
|
|
nextedge.Bond(ref topcasing);
|
|
rightcand.Bond(ref sidecasing);
|
|
rightcand.Lprev();
|
|
rightcand.Sym(ref outercasing);
|
|
nextedge.Lnext();
|
|
nextedge.Bond(ref outercasing);
|
|
// Correct the vertices to reflect the edge flip.
|
|
rightcand.SetOrg(null);
|
|
rightcand.SetDest(lowerright);
|
|
rightcand.SetApex(nextapex);
|
|
nextedge.SetOrg(upperright);
|
|
nextedge.SetDest(null);
|
|
nextedge.SetApex(nextapex);
|
|
// Consider the newly exposed vertex.
|
|
upperright = nextapex;
|
|
// What vertex would be exposed if another edge were deleted?
|
|
sidecasing.Copy(ref nextedge);
|
|
nextapex = nextedge.Apex();
|
|
if (nextapex != null)
|
|
{
|
|
// Check whether the edge is Delaunay.
|
|
badedge = predicates.InCircle(lowerleft, lowerright, upperright, nextapex) > 0.0;
|
|
}
|
|
else
|
|
{
|
|
// Avoid eating right through the triangulation.
|
|
badedge = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (leftfinished || (!rightfinished &&
|
|
(predicates.InCircle(upperleft, lowerleft, lowerright, upperright) > 0.0)))
|
|
{
|
|
// Knit the triangulations, adding an edge from 'lowerleft'
|
|
// to 'upperright'.
|
|
baseedge.Bond(ref rightcand);
|
|
rightcand.Lprev(ref baseedge);
|
|
baseedge.SetDest(lowerleft);
|
|
lowerright = upperright;
|
|
baseedge.Sym(ref rightcand);
|
|
upperright = rightcand.Apex();
|
|
}
|
|
else
|
|
{
|
|
// Knit the triangulations, adding an edge from 'upperleft'
|
|
// to 'lowerright'.
|
|
baseedge.Bond(ref leftcand);
|
|
leftcand.Lnext(ref baseedge);
|
|
baseedge.SetOrg(lowerright);
|
|
lowerleft = upperleft;
|
|
baseedge.Sym(ref leftcand);
|
|
upperleft = leftcand.Apex();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Recursively form a Delaunay triangulation by the divide-and-conquer method.
|
|
/// </summary>
|
|
/// <param name="left"></param>
|
|
/// <param name="right"></param>
|
|
/// <param name="axis"></param>
|
|
/// <param name="farleft"></param>
|
|
/// <param name="farright"></param>
|
|
/// <remarks>
|
|
/// Recursively breaks down the problem into smaller pieces, which are
|
|
/// knitted together by mergehulls(). The base cases (problems of two or
|
|
/// three vertices) are handled specially here.
|
|
///
|
|
/// On completion, 'farleft' and 'farright' are bounding triangles such that
|
|
/// the origin of 'farleft' is the leftmost vertex (breaking ties by
|
|
/// choosing the highest leftmost vertex), and the destination of
|
|
/// 'farright' is the rightmost vertex (breaking ties by choosing the
|
|
/// lowest rightmost vertex).
|
|
/// </remarks>
|
|
void DivconqRecurse(int left, int right, int axis,
|
|
ref Otri farleft, ref Otri farright)
|
|
{
|
|
Otri midtri = default(Otri);
|
|
Otri tri1 = default(Otri);
|
|
Otri tri2 = default(Otri);
|
|
Otri tri3 = default(Otri);
|
|
Otri innerleft = default(Otri), innerright = default(Otri);
|
|
double area;
|
|
int vertices = right - left + 1;
|
|
int divider;
|
|
|
|
if (vertices == 2)
|
|
{
|
|
// The triangulation of two vertices is an edge. An edge is
|
|
// represented by two bounding triangles.
|
|
mesh.MakeTriangle(ref farleft);
|
|
farleft.SetOrg(sortarray[left]);
|
|
farleft.SetDest(sortarray[left + 1]);
|
|
// The apex is intentionally left NULL.
|
|
mesh.MakeTriangle(ref farright);
|
|
farright.SetOrg(sortarray[left + 1]);
|
|
farright.SetDest(sortarray[left]);
|
|
// The apex is intentionally left NULL.
|
|
farleft.Bond(ref farright);
|
|
farleft.Lprev();
|
|
farright.Lnext();
|
|
farleft.Bond(ref farright);
|
|
farleft.Lprev();
|
|
farright.Lnext();
|
|
farleft.Bond(ref farright);
|
|
|
|
// Ensure that the origin of 'farleft' is sortarray[0].
|
|
farright.Lprev(ref farleft);
|
|
return;
|
|
}
|
|
else if (vertices == 3)
|
|
{
|
|
// The triangulation of three vertices is either a triangle (with
|
|
// three bounding triangles) or two edges (with four bounding
|
|
// triangles). In either case, four triangles are created.
|
|
mesh.MakeTriangle(ref midtri);
|
|
mesh.MakeTriangle(ref tri1);
|
|
mesh.MakeTriangle(ref tri2);
|
|
mesh.MakeTriangle(ref tri3);
|
|
area = predicates.CounterClockwise(sortarray[left], sortarray[left + 1], sortarray[left + 2]);
|
|
if (area == 0.0)
|
|
{
|
|
// Three collinear vertices; the triangulation is two edges.
|
|
midtri.SetOrg(sortarray[left]);
|
|
midtri.SetDest(sortarray[left + 1]);
|
|
tri1.SetOrg(sortarray[left + 1]);
|
|
tri1.SetDest(sortarray[left]);
|
|
tri2.SetOrg(sortarray[left + 2]);
|
|
tri2.SetDest(sortarray[left + 1]);
|
|
tri3.SetOrg(sortarray[left + 1]);
|
|
tri3.SetDest(sortarray[left + 2]);
|
|
// All apices are intentionally left NULL.
|
|
midtri.Bond(ref tri1);
|
|
tri2.Bond(ref tri3);
|
|
midtri.Lnext();
|
|
tri1.Lprev();
|
|
tri2.Lnext();
|
|
tri3.Lprev();
|
|
midtri.Bond(ref tri3);
|
|
tri1.Bond(ref tri2);
|
|
midtri.Lnext();
|
|
tri1.Lprev();
|
|
tri2.Lnext();
|
|
tri3.Lprev();
|
|
midtri.Bond(ref tri1);
|
|
tri2.Bond(ref tri3);
|
|
// Ensure that the origin of 'farleft' is sortarray[0].
|
|
tri1.Copy(ref farleft);
|
|
// Ensure that the destination of 'farright' is sortarray[2].
|
|
tri2.Copy(ref farright);
|
|
}
|
|
else
|
|
{
|
|
// The three vertices are not collinear; the triangulation is one
|
|
// triangle, namely 'midtri'.
|
|
midtri.SetOrg(sortarray[left]);
|
|
tri1.SetDest(sortarray[left]);
|
|
tri3.SetOrg(sortarray[left]);
|
|
// Apices of tri1, tri2, and tri3 are left NULL.
|
|
if (area > 0.0)
|
|
{
|
|
// The vertices are in counterclockwise order.
|
|
midtri.SetDest(sortarray[left + 1]);
|
|
tri1.SetOrg(sortarray[left + 1]);
|
|
tri2.SetDest(sortarray[left + 1]);
|
|
midtri.SetApex(sortarray[left + 2]);
|
|
tri2.SetOrg(sortarray[left + 2]);
|
|
tri3.SetDest(sortarray[left + 2]);
|
|
}
|
|
else
|
|
{
|
|
// The vertices are in clockwise order.
|
|
midtri.SetDest(sortarray[left + 2]);
|
|
tri1.SetOrg(sortarray[left + 2]);
|
|
tri2.SetDest(sortarray[left + 2]);
|
|
midtri.SetApex(sortarray[left + 1]);
|
|
tri2.SetOrg(sortarray[left + 1]);
|
|
tri3.SetDest(sortarray[left + 1]);
|
|
}
|
|
// The topology does not depend on how the vertices are ordered.
|
|
midtri.Bond(ref tri1);
|
|
midtri.Lnext();
|
|
midtri.Bond(ref tri2);
|
|
midtri.Lnext();
|
|
midtri.Bond(ref tri3);
|
|
tri1.Lprev();
|
|
tri2.Lnext();
|
|
tri1.Bond(ref tri2);
|
|
tri1.Lprev();
|
|
tri3.Lprev();
|
|
tri1.Bond(ref tri3);
|
|
tri2.Lnext();
|
|
tri3.Lprev();
|
|
tri2.Bond(ref tri3);
|
|
// Ensure that the origin of 'farleft' is sortarray[0].
|
|
tri1.Copy(ref farleft);
|
|
// Ensure that the destination of 'farright' is sortarray[2].
|
|
if (area > 0.0)
|
|
{
|
|
tri2.Copy(ref farright);
|
|
}
|
|
else
|
|
{
|
|
farleft.Lnext(ref farright);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
// Split the vertices in half.
|
|
divider = vertices >> 1;
|
|
|
|
// Recursively triangulate each half.
|
|
DivconqRecurse(left, left + divider - 1, 1 - axis, ref farleft, ref innerleft);
|
|
DivconqRecurse(left + divider, right, 1 - axis, ref innerright, ref farright);
|
|
|
|
// Merge the two triangulations into one.
|
|
MergeHulls(ref farleft, ref innerleft, ref innerright, ref farright, axis);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Removes ghost triangles.
|
|
/// </summary>
|
|
/// <param name="startghost"></param>
|
|
/// <returns>Number of vertices on the hull.</returns>
|
|
int RemoveGhosts(ref Otri startghost)
|
|
{
|
|
Otri searchedge = default(Otri);
|
|
Otri dissolveedge = default(Otri);
|
|
Otri deadtriangle = default(Otri);
|
|
Vertex markorg;
|
|
|
|
int hullsize;
|
|
|
|
bool noPoly = !mesh.behavior.Poly;
|
|
|
|
// Find an edge on the convex hull to start point location from.
|
|
startghost.Lprev(ref searchedge);
|
|
searchedge.Sym();
|
|
mesh.dummytri.neighbors[0] = searchedge;
|
|
|
|
// Remove the bounding box and count the convex hull edges.
|
|
startghost.Copy(ref dissolveedge);
|
|
hullsize = 0;
|
|
do
|
|
{
|
|
hullsize++;
|
|
dissolveedge.Lnext(ref deadtriangle);
|
|
dissolveedge.Lprev();
|
|
dissolveedge.Sym();
|
|
|
|
// If no PSLG is involved, set the boundary markers of all the vertices
|
|
// on the convex hull. If a PSLG is used, this step is done later.
|
|
if (noPoly)
|
|
{
|
|
// Watch out for the case where all the input vertices are collinear.
|
|
if (dissolveedge.tri.id != Mesh.DUMMY)
|
|
{
|
|
markorg = dissolveedge.Org();
|
|
if (markorg.label == 0)
|
|
{
|
|
markorg.label = 1;
|
|
}
|
|
}
|
|
}
|
|
// Remove a bounding triangle from a convex hull triangle.
|
|
dissolveedge.Dissolve(mesh.dummytri);
|
|
// Find the next bounding triangle.
|
|
deadtriangle.Sym(ref dissolveedge);
|
|
|
|
// Delete the bounding triangle.
|
|
mesh.TriangleDealloc(deadtriangle.tri);
|
|
} while (!dissolveedge.Equals(startghost));
|
|
|
|
return hullsize;
|
|
}
|
|
}
|
|
}
|