rj-action-library/External/Triangle.NET/Triangle/Mesh.cs

1769 lines
72 KiB
C#

// -----------------------------------------------------------------------
// <copyright file="Mesh.cs">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace TriangleNet
{
using System;
using System.Collections.Generic;
using TriangleNet.Geometry;
using TriangleNet.Logging;
using TriangleNet.Meshing;
using TriangleNet.Meshing.Data;
using TriangleNet.Meshing.Iterators;
using TriangleNet.Tools;
using TriangleNet.Topology;
/// <summary>
/// Mesh data structure.
/// </summary>
public class Mesh : IMesh
{
#region Variables
IPredicates predicates;
ILog<LogItem> logger;
QualityMesher qualityMesher;
// Stack that maintains a list of recently flipped triangles.
Stack<Otri> flipstack;
// TODO: Check if custom hashmap implementation could be faster.
// Using hashsets for memory management should quite fast.
internal TrianglePool triangles;
internal Dictionary<int, SubSegment> subsegs;
internal Dictionary<int, Vertex> vertices;
// Hash seeds (should belong to mesh instance)
internal int hash_vtx = 0;
internal int hash_seg = 0;
internal int hash_tri = 0;
internal List<Point> holes;
internal List<RegionPointer> regions;
// TODO: remove mesh_dim, invertices and insegments
// Other variables.
internal Rectangle bounds; // x and y bounds.
internal int invertices; // Number of input vertices.
internal int insegments; // Number of input segments.
internal int undeads; // Number of input vertices that don't appear in the mesh.
internal int mesh_dim; // Dimension (ought to be 2).
internal int nextras; // Number of attributes per vertex.
//internal int eextras; // Number of attributes per triangle.
internal int hullsize; // Number of edges in convex hull.
internal int steinerleft; // Number of Steiner points not yet used.
internal bool checksegments; // Are there segments in the triangulation yet?
internal bool checkquality; // Has quality triangulation begun yet?
// Triangular bounding box vertices.
internal Vertex infvertex1, infvertex2, infvertex3;
internal TriangleLocator locator;
// Controls the behavior of the mesh instance.
internal Behavior behavior;
// The current node numbering
internal NodeNumbering numbering;
#endregion
#region Public properties
/// <summary>
/// Gets the mesh bounding box.
/// </summary>
public Rectangle Bounds
{
get { return this.bounds; }
}
/// <summary>
/// Gets the mesh vertices.
/// </summary>
public ICollection<Vertex> Vertices
{
get { return this.vertices.Values; }
}
/// <summary>
/// Gets the mesh holes.
/// </summary>
public IList<Point> Holes
{
get { return this.holes; }
}
/// <summary>
/// Gets the mesh triangles.
/// </summary>
public ICollection<Triangle> Triangles
{
get { return this.triangles; }
}
/// <summary>
/// Gets the mesh segments.
/// </summary>
public ICollection<SubSegment> Segments
{
get { return this.subsegs.Values; }
}
/// <summary>
/// Gets the mesh edges.
/// </summary>
public IEnumerable<Edge> Edges
{
get
{
var e = new EdgeIterator(this);
while (e.MoveNext())
{
yield return e.Current;
}
}
}
/// <summary>
/// Gets the number of input vertices.
/// </summary>
public int NumberOfInputPoints
{
get { return invertices; }
}
/// <summary>
/// Gets the number of mesh edges.
/// </summary>
public int NumberOfEdges
{
get { return (3 * triangles.Count + hullsize) / 2; }
}
/// <summary>
/// Indicates whether the input is a PSLG or a point set.
/// </summary>
public bool IsPolygon
{
get { return this.insegments > 0; }
}
/// <summary>
/// Gets the current node numbering.
/// </summary>
public NodeNumbering CurrentNumbering
{
get { return numbering; }
}
#endregion
#region "Outer space" variables
internal const int DUMMY = -1;
// The triangle that fills "outer space," called 'dummytri', is pointed to
// by every triangle and subsegment on a boundary (be it outer or inner) of
// the triangulation. Also, 'dummytri' points to one of the triangles on
// the convex hull (until the holes and concavities are carved), making it
// possible to find a starting triangle for point location.
// 'dummytri' and 'dummysub' are generally required to fulfill only a few
// invariants: their vertices must remain NULL and 'dummytri' must always
// be bonded (at offset zero) to some triangle on the convex hull of the
// mesh, via a boundary edge. Otherwise, the connections of 'dummytri' and
// 'dummysub' may change willy-nilly. This makes it possible to avoid
// writing a good deal of special-case code (in the edge flip, for example)
// for dealing with the boundary of the mesh, places where no subsegment is
// present, and so forth. Other entities are frequently bonded to
// 'dummytri' and 'dummysub' as if they were real mesh entities, with no
// harm done.
internal Triangle dummytri;
// Set up 'dummysub', the omnipresent subsegment pointed to by any
// triangle side or subsegment end that isn't attached to a real
// subsegment.
internal SubSegment dummysub;
private void Initialize()
{
dummysub = new SubSegment();
dummysub.hash = DUMMY;
// Initialize the two adjoining subsegments to be the omnipresent
// subsegment. These will eventually be changed by various bonding
// operations, but their values don't really matter, as long as they
// can legally be dereferenced.
dummysub.subsegs[0].seg = dummysub;
dummysub.subsegs[1].seg = dummysub;
// Set up 'dummytri', the 'triangle' that occupies "outer space."
dummytri = new Triangle();
dummytri.hash = dummytri.id = DUMMY;
// Initialize the three adjoining triangles to be "outer space." These
// will eventually be changed by various bonding operations, but their
// values don't really matter, as long as they can legally be
// dereferenced.
dummytri.neighbors[0].tri = dummytri;
dummytri.neighbors[1].tri = dummytri;
dummytri.neighbors[2].tri = dummytri;
// Initialize the three adjoining subsegments of 'dummytri' to be
// the omnipresent subsegment.
dummytri.subsegs[0].seg = dummysub;
dummytri.subsegs[1].seg = dummysub;
dummytri.subsegs[2].seg = dummysub;
}
#endregion
/// <summary>
/// Initializes a new instance of the <see cref="Mesh" /> class.
/// </summary>
public Mesh(Configuration config)
{
Initialize();
logger = Log.Instance;
behavior = new Behavior();
vertices = new Dictionary<int, Vertex>();
subsegs = new Dictionary<int, SubSegment>();
triangles = config.TrianglePool();
flipstack = new Stack<Otri>();
holes = new List<Point>();
regions = new List<RegionPointer>();
steinerleft = -1;
this.predicates = config.Predicates();
this.locator = new TriangleLocator(this, predicates);
}
public void Refine(QualityOptions quality, bool delaunay = false)
{
invertices = vertices.Count;
if (behavior.Poly)
{
insegments = behavior.useSegments ? subsegs.Count : hullsize;
}
Reset();
if (qualityMesher == null)
{
qualityMesher = new QualityMesher(this, new Configuration());
}
// Enforce angle and area constraints.
qualityMesher.Apply(quality, delaunay);
}
/// <summary>
/// Renumber vertex and triangle id's.
/// </summary>
public void Renumber()
{
this.Renumber(NodeNumbering.Linear);
}
/// <summary>
/// Renumber vertex and triangle id's.
/// </summary>
public void Renumber(NodeNumbering num)
{
// Don't need to do anything if the nodes are already numbered.
if (num == this.numbering)
{
return;
}
int id;
if (num == NodeNumbering.Linear)
{
id = 0;
foreach (var node in this.vertices.Values)
{
node.id = id++;
}
}
else if (num == NodeNumbering.CuthillMcKee)
{
var rcm = new CuthillMcKee();
var iperm = rcm.Renumber(this);
// Permute the node indices.
foreach (var node in this.vertices.Values)
{
node.id = iperm[node.id];
}
}
// Remember the current numbering.
numbering = num;
// Triangles will always be numbered from 0 to n-1
id = 0;
foreach (var item in this.triangles)
{
item.id = id++;
}
}
#region Misc
/// <summary>
/// Set QualityMesher for mesh refinement.
/// </summary>
/// <param name="qmesher"></param>
internal void SetQualityMesher(QualityMesher qmesher)
{
qualityMesher = qmesher;
}
internal void CopyTo(Mesh target)
{
target.vertices = this.vertices;
target.triangles = this.triangles;
target.subsegs = this.subsegs;
target.holes = this.holes;
target.regions = this.regions;
target.hash_vtx = this.hash_vtx;
target.hash_seg = this.hash_seg;
target.hash_tri = this.hash_tri;
target.numbering = this.numbering;
target.hullsize = this.hullsize;
}
/// <summary>
/// Reset all the mesh data. This method will also wipe
/// out all mesh data.
/// </summary>
private void ResetData()
{
vertices.Clear();
triangles.Restart();
subsegs.Clear();
holes.Clear();
regions.Clear();
this.hash_vtx = 0;
this.hash_seg = 0;
this.hash_tri = 0;
flipstack.Clear();
hullsize = 0;
Reset();
locator.Reset();
}
/// <summary>
/// Reset the mesh triangulation state.
/// </summary>
private void Reset()
{
numbering = NodeNumbering.None;
undeads = 0; // No eliminated input vertices yet.
checksegments = false; // There are no segments in the triangulation yet.
checkquality = false; // The quality triangulation stage has not begun.
Statistic.InCircleCount = 0;
Statistic.CounterClockwiseCount = 0;
Statistic.InCircleAdaptCount = 0;
Statistic.CounterClockwiseAdaptCount = 0;
Statistic.Orient3dCount = 0;
Statistic.HyperbolaCount = 0;
Statistic.CircleTopCount = 0;
Statistic.CircumcenterCount = 0;
}
/// <summary>
/// Read the vertices from memory.
/// </summary>
/// <param name="data">The input data.</param>
internal void TransferNodes(IList<Vertex> points)
{
this.invertices = points.Count;
this.mesh_dim = 2;
this.bounds = new Rectangle();
if (this.invertices < 3)
{
logger.Error("Input must have at least three input vertices.", "Mesh.TransferNodes()");
throw new Exception("Input must have at least three input vertices.");
}
var v = points[0];
#if USE_ATTRIBS
// Check attributes.
this.nextras = v.attributes == null ? 0 : v.attributes.Length;
#endif
// Simple heuristic to check if ids are already set. We assume that if the
// first two vertex ids are distinct, then all input vertices have pairwise
// distinct ids.
bool userId = (v.id != points[1].id);
foreach (var p in points)
{
if (userId)
{
p.hash = p.id;
// Make sure the hash counter gets updated.
hash_vtx = Math.Max(p.hash + 1, hash_vtx);
}
else
{
p.hash = p.id = hash_vtx++;
}
this.vertices.Add(p.hash, p);
this.bounds.Expand(p);
}
}
/// <summary>
/// Construct a mapping from vertices to triangles to improve the speed of
/// point location for segment insertion.
/// </summary>
/// <remarks>
/// Traverses all the triangles, and provides each corner of each triangle
/// with a pointer to that triangle. Of course, pointers will be overwritten
/// by other pointers because (almost) each vertex is a corner of several
/// triangles, but in the end every vertex will point to some triangle
/// that contains it.
/// </remarks>
internal void MakeVertexMap()
{
Otri tri = default(Otri);
Vertex triorg;
foreach (var t in this.triangles)
{
tri.tri = t;
// Check all three vertices of the triangle.
for (tri.orient = 0; tri.orient < 3; tri.orient++)
{
triorg = tri.Org();
triorg.tri = tri;
}
}
}
#endregion
#region Factory
/// <summary>
/// Create a new triangle with orientation zero.
/// </summary>
/// <param name="newotri">Reference to the new triangle.</param>
internal void MakeTriangle(ref Otri newotri)
{
Triangle tri = triangles.Get();
//tri.id = tri.hash;
tri.subsegs[0].seg = dummysub;
tri.subsegs[1].seg = dummysub;
tri.subsegs[2].seg = dummysub;
tri.neighbors[0].tri = dummytri;
tri.neighbors[1].tri = dummytri;
tri.neighbors[2].tri = dummytri;
newotri.tri = tri;
newotri.orient = 0;
}
/// <summary>
/// Create a new subsegment with orientation zero.
/// </summary>
/// <param name="newsubseg">Reference to the new subseg.</param>
internal void MakeSegment(ref Osub newsubseg)
{
var seg = new SubSegment();
seg.hash = this.hash_seg++;
seg.subsegs[0].seg = dummysub;
seg.subsegs[1].seg = dummysub;
seg.triangles[0].tri = dummytri;
seg.triangles[1].tri = dummytri;
newsubseg.seg = seg;
newsubseg.orient = 0;
subsegs.Add(seg.hash, seg);
}
#endregion
#region Manipulation
/// <summary>
/// Insert a vertex into a Delaunay triangulation, performing flips as necessary
/// to maintain the Delaunay property.
/// </summary>
/// <param name="newvertex">The point to be inserted.</param>
/// <param name="searchtri">The triangle to start the search.</param>
/// <param name="splitseg">Segment to split.</param>
/// <param name="segmentflaws">Check for creation of encroached subsegments.</param>
/// <param name="triflaws">Check for creation of bad quality triangles.</param>
/// <returns>If a duplicate vertex or violated segment does not prevent the
/// vertex from being inserted, the return value will be ENCROACHINGVERTEX if
/// the vertex encroaches upon a subsegment (and checking is enabled), or
/// SUCCESSFULVERTEX otherwise. In either case, 'searchtri' is set to a handle
/// whose origin is the newly inserted vertex.</returns>
/// <remarks>
/// The point 'newvertex' is located. If 'searchtri.triangle' is not NULL,
/// the search for the containing triangle begins from 'searchtri'. If
/// 'searchtri.triangle' is NULL, a full point location procedure is called.
/// If 'insertvertex' is found inside a triangle, the triangle is split into
/// three; if 'insertvertex' lies on an edge, the edge is split in two,
/// thereby splitting the two adjacent triangles into four. Edge flips are
/// used to restore the Delaunay property. If 'insertvertex' lies on an
/// existing vertex, no action is taken, and the value DUPLICATEVERTEX is
/// returned. On return, 'searchtri' is set to a handle whose origin is the
/// existing vertex.
///
/// InsertVertex() does not use flip() for reasons of speed; some
/// information can be reused from edge flip to edge flip, like the
/// locations of subsegments.
///
/// Param 'splitseg': Normally, the parameter 'splitseg' is set to NULL,
/// implying that no subsegment should be split. In this case, if 'insertvertex'
/// is found to lie on a segment, no action is taken, and the value VIOLATINGVERTEX
/// is returned. On return, 'searchtri' is set to a handle whose primary edge is the
/// violated subsegment.
/// If the calling routine wishes to split a subsegment by inserting a vertex in it,
/// the parameter 'splitseg' should be that subsegment. In this case, 'searchtri'
/// MUST be the triangle handle reached by pivoting from that subsegment; no point
/// location is done.
///
/// Param 'segmentflaws': Flags that indicate whether or not there should
/// be checks for the creation of encroached subsegments. If a newly inserted
/// vertex encroaches upon subsegments, these subsegments are added to the list
/// of subsegments to be split if 'segmentflaws' is set.
///
/// Param 'triflaws': Flags that indicate whether or not there should be
/// checks for the creation of bad quality triangles. If bad triangles are
/// created, these are added to the queue if 'triflaws' is set.
/// </remarks>
internal InsertVertexResult InsertVertex(Vertex newvertex, ref Otri searchtri,
ref Osub splitseg, bool segmentflaws, bool triflaws)
{
Otri horiz = default(Otri);
Otri top = default(Otri);
Otri botleft = default(Otri), botright = default(Otri);
Otri topleft = default(Otri), topright = default(Otri);
Otri newbotleft = default(Otri), newbotright = default(Otri);
Otri newtopright = default(Otri);
Otri botlcasing = default(Otri), botrcasing = default(Otri);
Otri toplcasing = default(Otri), toprcasing = default(Otri);
Otri testtri = default(Otri);
Osub botlsubseg = default(Osub), botrsubseg = default(Osub);
Osub toplsubseg = default(Osub), toprsubseg = default(Osub);
Osub brokensubseg = default(Osub);
Osub checksubseg = default(Osub);
Osub rightsubseg = default(Osub);
Osub newsubseg = default(Osub);
BadSubseg encroached;
//FlipStacker newflip;
Vertex first;
Vertex leftvertex, rightvertex, botvertex, topvertex, farvertex;
Vertex segmentorg, segmentdest;
int region;
double area;
InsertVertexResult success;
LocateResult intersect;
bool doflip;
bool mirrorflag;
bool enq;
if (splitseg.seg == null)
{
// Find the location of the vertex to be inserted. Check if a good
// starting triangle has already been provided by the caller.
if (searchtri.tri.id == DUMMY)
{
// Find a boundary triangle.
horiz.tri = dummytri;
horiz.orient = 0;
horiz.Sym();
// Search for a triangle containing 'newvertex'.
intersect = locator.Locate(newvertex, ref horiz);
}
else
{
// Start searching from the triangle provided by the caller.
searchtri.Copy(ref horiz);
intersect = locator.PreciseLocate(newvertex, ref horiz, true);
}
}
else
{
// The calling routine provides the subsegment in which
// the vertex is inserted.
searchtri.Copy(ref horiz);
intersect = LocateResult.OnEdge;
}
if (intersect == LocateResult.OnVertex)
{
// There's already a vertex there. Return in 'searchtri' a triangle
// whose origin is the existing vertex.
horiz.Copy(ref searchtri);
locator.Update(ref horiz);
return InsertVertexResult.Duplicate;
}
if ((intersect == LocateResult.OnEdge) || (intersect == LocateResult.Outside))
{
// The vertex falls on an edge or boundary.
if (checksegments && (splitseg.seg == null))
{
// Check whether the vertex falls on a subsegment.
horiz.Pivot(ref brokensubseg);
if (brokensubseg.seg.hash != DUMMY)
{
// The vertex falls on a subsegment, and hence will not be inserted.
if (segmentflaws)
{
enq = behavior.NoBisect != 2;
if (enq && (behavior.NoBisect == 1))
{
// This subsegment may be split only if it is an
// internal boundary.
horiz.Sym(ref testtri);
enq = testtri.tri.id != DUMMY;
}
if (enq)
{
// Add the subsegment to the list of encroached subsegments.
encroached = new BadSubseg();
encroached.subseg = brokensubseg;
encroached.org = brokensubseg.Org();
encroached.dest = brokensubseg.Dest();
qualityMesher.AddBadSubseg(encroached);
}
}
// Return a handle whose primary edge contains the vertex,
// which has not been inserted.
horiz.Copy(ref searchtri);
locator.Update(ref horiz);
return InsertVertexResult.Violating;
}
}
// Insert the vertex on an edge, dividing one triangle into two (if
// the edge lies on a boundary) or two triangles into four.
horiz.Lprev(ref botright);
botright.Sym(ref botrcasing);
horiz.Sym(ref topright);
// Is there a second triangle? (Or does this edge lie on a boundary?)
mirrorflag = topright.tri.id != DUMMY;
if (mirrorflag)
{
topright.Lnext();
topright.Sym(ref toprcasing);
MakeTriangle(ref newtopright);
}
else
{
// Splitting a boundary edge increases the number of boundary edges.
hullsize++;
}
MakeTriangle(ref newbotright);
// Set the vertices of changed and new triangles.
rightvertex = horiz.Org();
leftvertex = horiz.Dest();
botvertex = horiz.Apex();
newbotright.SetOrg(botvertex);
newbotright.SetDest(rightvertex);
newbotright.SetApex(newvertex);
horiz.SetOrg(newvertex);
// Set the region of a new triangle.
newbotright.tri.label = botright.tri.label;
if (behavior.VarArea)
{
// Set the area constraint of a new triangle.
newbotright.tri.area = botright.tri.area;
}
if (mirrorflag)
{
topvertex = topright.Dest();
newtopright.SetOrg(rightvertex);
newtopright.SetDest(topvertex);
newtopright.SetApex(newvertex);
topright.SetOrg(newvertex);
// Set the region of another new triangle.
newtopright.tri.label = topright.tri.label;
if (behavior.VarArea)
{
// Set the area constraint of another new triangle.
newtopright.tri.area = topright.tri.area;
}
}
// There may be subsegments that need to be bonded
// to the new triangle(s).
if (checksegments)
{
botright.Pivot(ref botrsubseg);
if (botrsubseg.seg.hash != DUMMY)
{
botright.SegDissolve(dummysub);
newbotright.SegBond(ref botrsubseg);
}
if (mirrorflag)
{
topright.Pivot(ref toprsubseg);
if (toprsubseg.seg.hash != DUMMY)
{
topright.SegDissolve(dummysub);
newtopright.SegBond(ref toprsubseg);
}
}
}
// Bond the new triangle(s) to the surrounding triangles.
newbotright.Bond(ref botrcasing);
newbotright.Lprev();
newbotright.Bond(ref botright);
newbotright.Lprev();
if (mirrorflag)
{
newtopright.Bond(ref toprcasing);
newtopright.Lnext();
newtopright.Bond(ref topright);
newtopright.Lnext();
newtopright.Bond(ref newbotright);
}
if (splitseg.seg != null)
{
// Split the subsegment into two.
splitseg.SetDest(newvertex);
segmentorg = splitseg.SegOrg();
segmentdest = splitseg.SegDest();
splitseg.Sym();
splitseg.Pivot(ref rightsubseg);
InsertSubseg(ref newbotright, splitseg.seg.boundary);
newbotright.Pivot(ref newsubseg);
newsubseg.SetSegOrg(segmentorg);
newsubseg.SetSegDest(segmentdest);
splitseg.Bond(ref newsubseg);
newsubseg.Sym();
newsubseg.Bond(ref rightsubseg);
splitseg.Sym();
// Transfer the subsegment's boundary marker to the vertex if required.
if (newvertex.label == 0)
{
newvertex.label = splitseg.seg.boundary;
}
}
if (checkquality)
{
flipstack.Clear();
flipstack.Push(default(Otri)); // Dummy flip (see UndoVertex)
flipstack.Push(horiz);
}
// Position 'horiz' on the first edge to check for
// the Delaunay property.
horiz.Lnext();
}
else
{
// Insert the vertex in a triangle, splitting it into three.
horiz.Lnext(ref botleft);
horiz.Lprev(ref botright);
botleft.Sym(ref botlcasing);
botright.Sym(ref botrcasing);
MakeTriangle(ref newbotleft);
MakeTriangle(ref newbotright);
// Set the vertices of changed and new triangles.
rightvertex = horiz.Org();
leftvertex = horiz.Dest();
botvertex = horiz.Apex();
newbotleft.SetOrg(leftvertex);
newbotleft.SetDest(botvertex);
newbotleft.SetApex(newvertex);
newbotright.SetOrg(botvertex);
newbotright.SetDest(rightvertex);
newbotright.SetApex(newvertex);
horiz.SetApex(newvertex);
// Set the region of the new triangles.
newbotleft.tri.label = horiz.tri.label;
newbotright.tri.label = horiz.tri.label;
if (behavior.VarArea)
{
// Set the area constraint of the new triangles.
area = horiz.tri.area;
newbotleft.tri.area = area;
newbotright.tri.area = area;
}
// There may be subsegments that need to be bonded
// to the new triangles.
if (checksegments)
{
botleft.Pivot(ref botlsubseg);
if (botlsubseg.seg.hash != DUMMY)
{
botleft.SegDissolve(dummysub);
newbotleft.SegBond(ref botlsubseg);
}
botright.Pivot(ref botrsubseg);
if (botrsubseg.seg.hash != DUMMY)
{
botright.SegDissolve(dummysub);
newbotright.SegBond(ref botrsubseg);
}
}
// Bond the new triangles to the surrounding triangles.
newbotleft.Bond(ref botlcasing);
newbotright.Bond(ref botrcasing);
newbotleft.Lnext();
newbotright.Lprev();
newbotleft.Bond(ref newbotright);
newbotleft.Lnext();
botleft.Bond(ref newbotleft);
newbotright.Lprev();
botright.Bond(ref newbotright);
if (checkquality)
{
flipstack.Clear();
flipstack.Push(horiz);
}
}
// The insertion is successful by default, unless an encroached
// subsegment is found.
success = InsertVertexResult.Successful;
if (newvertex.tri.tri != null)
{
// Store the coordinates of the triangle that contains newvertex.
newvertex.tri.SetOrg(rightvertex);
newvertex.tri.SetDest(leftvertex);
newvertex.tri.SetApex(botvertex);
}
// Circle around the newly inserted vertex, checking each edge opposite it
// for the Delaunay property. Non-Delaunay edges are flipped. 'horiz' is
// always the edge being checked. 'first' marks where to stop circling.
first = horiz.Org();
rightvertex = first;
leftvertex = horiz.Dest();
// Circle until finished.
while (true)
{
// By default, the edge will be flipped.
doflip = true;
if (checksegments)
{
// Check for a subsegment, which cannot be flipped.
horiz.Pivot(ref checksubseg);
if (checksubseg.seg.hash != DUMMY)
{
// The edge is a subsegment and cannot be flipped.
doflip = false;
if (segmentflaws)
{
// Does the new vertex encroach upon this subsegment?
if (qualityMesher.CheckSeg4Encroach(ref checksubseg) > 0)
{
success = InsertVertexResult.Encroaching;
}
}
}
}
if (doflip)
{
// Check if the edge is a boundary edge.
horiz.Sym(ref top);
if (top.tri.id == DUMMY)
{
// The edge is a boundary edge and cannot be flipped.
doflip = false;
}
else
{
// Find the vertex on the other side of the edge.
farvertex = top.Apex();
// In the incremental Delaunay triangulation algorithm, any of
// 'leftvertex', 'rightvertex', and 'farvertex' could be vertices
// of the triangular bounding box. These vertices must be
// treated as if they are infinitely distant, even though their
// "coordinates" are not.
if ((leftvertex == infvertex1) || (leftvertex == infvertex2) ||
(leftvertex == infvertex3))
{
// 'leftvertex' is infinitely distant. Check the convexity of
// the boundary of the triangulation. 'farvertex' might be
// infinite as well, but trust me, this same condition should
// be applied.
doflip = predicates.CounterClockwise(newvertex, rightvertex, farvertex) > 0.0;
}
else if ((rightvertex == infvertex1) ||
(rightvertex == infvertex2) ||
(rightvertex == infvertex3))
{
// 'rightvertex' is infinitely distant. Check the convexity of
// the boundary of the triangulation. 'farvertex' might be
// infinite as well, but trust me, this same condition should
// be applied.
doflip = predicates.CounterClockwise(farvertex, leftvertex, newvertex) > 0.0;
}
else if ((farvertex == infvertex1) ||
(farvertex == infvertex2) ||
(farvertex == infvertex3))
{
// 'farvertex' is infinitely distant and cannot be inside
// the circumcircle of the triangle 'horiz'.
doflip = false;
}
else
{
// Test whether the edge is locally Delaunay.
doflip = predicates.InCircle(leftvertex, newvertex, rightvertex, farvertex) > 0.0;
}
if (doflip)
{
// We made it! Flip the edge 'horiz' by rotating its containing
// quadrilateral (the two triangles adjacent to 'horiz').
// Identify the casing of the quadrilateral.
top.Lprev(ref topleft);
topleft.Sym(ref toplcasing);
top.Lnext(ref topright);
topright.Sym(ref toprcasing);
horiz.Lnext(ref botleft);
botleft.Sym(ref botlcasing);
horiz.Lprev(ref botright);
botright.Sym(ref botrcasing);
// Rotate the quadrilateral one-quarter turn counterclockwise.
topleft.Bond(ref botlcasing);
botleft.Bond(ref botrcasing);
botright.Bond(ref toprcasing);
topright.Bond(ref toplcasing);
if (checksegments)
{
// Check for subsegments and rebond them to the quadrilateral.
topleft.Pivot(ref toplsubseg);
botleft.Pivot(ref botlsubseg);
botright.Pivot(ref botrsubseg);
topright.Pivot(ref toprsubseg);
if (toplsubseg.seg.hash == DUMMY)
{
topright.SegDissolve(dummysub);
}
else
{
topright.SegBond(ref toplsubseg);
}
if (botlsubseg.seg.hash == DUMMY)
{
topleft.SegDissolve(dummysub);
}
else
{
topleft.SegBond(ref botlsubseg);
}
if (botrsubseg.seg.hash == DUMMY)
{
botleft.SegDissolve(dummysub);
}
else
{
botleft.SegBond(ref botrsubseg);
}
if (toprsubseg.seg.hash == DUMMY)
{
botright.SegDissolve(dummysub);
}
else
{
botright.SegBond(ref toprsubseg);
}
}
// New vertex assignments for the rotated quadrilateral.
horiz.SetOrg(farvertex);
horiz.SetDest(newvertex);
horiz.SetApex(rightvertex);
top.SetOrg(newvertex);
top.SetDest(farvertex);
top.SetApex(leftvertex);
// Assign region.
// TODO: check region ok (no Math.Min necessary)
region = Math.Min(top.tri.label, horiz.tri.label);
top.tri.label = region;
horiz.tri.label = region;
if (behavior.VarArea)
{
if ((top.tri.area <= 0.0) || (horiz.tri.area <= 0.0))
{
area = -1.0;
}
else
{
// Take the average of the two triangles' area constraints.
// This prevents small area constraints from migrating a
// long, long way from their original location due to flips.
area = 0.5 * (top.tri.area + horiz.tri.area);
}
top.tri.area = area;
horiz.tri.area = area;
}
if (checkquality)
{
flipstack.Push(horiz);
}
// On the next iterations, consider the two edges that were exposed (this
// is, are now visible to the newly inserted vertex) by the edge flip.
horiz.Lprev();
leftvertex = farvertex;
}
}
}
if (!doflip)
{
// The handle 'horiz' is accepted as locally Delaunay.
if (triflaws)
{
// Check the triangle 'horiz' for quality.
qualityMesher.TestTriangle(ref horiz);
}
// Look for the next edge around the newly inserted vertex.
horiz.Lnext();
horiz.Sym(ref testtri);
// Check for finishing a complete revolution about the new vertex, or
// falling outside of the triangulation. The latter will happen when
// a vertex is inserted at a boundary.
if ((leftvertex == first) || (testtri.tri.id == DUMMY))
{
// We're done. Return a triangle whose origin is the new vertex.
horiz.Lnext(ref searchtri);
Otri recenttri = default(Otri);
horiz.Lnext(ref recenttri);
locator.Update(ref recenttri);
return success;
}
// Finish finding the next edge around the newly inserted vertex.
testtri.Lnext(ref horiz);
rightvertex = leftvertex;
leftvertex = horiz.Dest();
}
}
}
/// <summary>
/// Create a new subsegment and inserts it between two triangles. Its
/// vertices are properly initialized.
/// </summary>
/// <param name="tri">The new subsegment is inserted at the edge
/// described by this handle.</param>
/// <param name="subsegmark">The marker 'subsegmark' is applied to the
/// subsegment and, if appropriate, its vertices.</param>
internal void InsertSubseg(ref Otri tri, int subsegmark)
{
Otri oppotri = default(Otri);
Osub newsubseg = default(Osub);
Vertex triorg, tridest;
triorg = tri.Org();
tridest = tri.Dest();
// Mark vertices if possible.
if (triorg.label == 0)
{
triorg.label = subsegmark;
}
if (tridest.label == 0)
{
tridest.label = subsegmark;
}
// Check if there's already a subsegment here.
tri.Pivot(ref newsubseg);
if (newsubseg.seg.hash == DUMMY)
{
// Make new subsegment and initialize its vertices.
MakeSegment(ref newsubseg);
newsubseg.SetOrg(tridest);
newsubseg.SetDest(triorg);
newsubseg.SetSegOrg(tridest);
newsubseg.SetSegDest(triorg);
// Bond new subsegment to the two triangles it is sandwiched between.
// Note that the facing triangle 'oppotri' might be equal to 'dummytri'
// (outer space), but the new subsegment is bonded to it all the same.
tri.SegBond(ref newsubseg);
tri.Sym(ref oppotri);
newsubseg.Sym();
oppotri.SegBond(ref newsubseg);
newsubseg.seg.boundary = subsegmark;
}
else if (newsubseg.seg.boundary == 0)
{
newsubseg.seg.boundary = subsegmark;
}
}
/// <summary>
/// Transform two triangles to two different triangles by flipping an edge
/// counterclockwise within a quadrilateral.
/// </summary>
/// <param name="flipedge">Handle to the edge that will be flipped.</param>
/// <remarks>Imagine the original triangles, abc and bad, oriented so that the
/// shared edge ab lies in a horizontal plane, with the vertex b on the left
/// and the vertex a on the right. The vertex c lies below the edge, and
/// the vertex d lies above the edge. The 'flipedge' handle holds the edge
/// ab of triangle abc, and is directed left, from vertex a to vertex b.
///
/// The triangles abc and bad are deleted and replaced by the triangles cdb
/// and dca. The triangles that represent abc and bad are NOT deallocated;
/// they are reused for dca and cdb, respectively. Hence, any handles that
/// may have held the original triangles are still valid, although not
/// directed as they were before.
///
/// Upon completion of this routine, the 'flipedge' handle holds the edge
/// dc of triangle dca, and is directed down, from vertex d to vertex c.
/// (Hence, the two triangles have rotated counterclockwise.)
///
/// WARNING: This transformation is geometrically valid only if the
/// quadrilateral adbc is convex. Furthermore, this transformation is
/// valid only if there is not a subsegment between the triangles abc and
/// bad. This routine does not check either of these preconditions, and
/// it is the responsibility of the calling routine to ensure that they are
/// met. If they are not, the streets shall be filled with wailing and
/// gnashing of teeth.
///
/// Terminology
///
/// A "local transformation" replaces a small set of triangles with another
/// set of triangles. This may or may not involve inserting or deleting a
/// vertex.
///
/// The term "casing" is used to describe the set of triangles that are
/// attached to the triangles being transformed, but are not transformed
/// themselves. Think of the casing as a fixed hollow structure inside
/// which all the action happens. A "casing" is only defined relative to
/// a single transformation; each occurrence of a transformation will
/// involve a different casing.
/// </remarks>
internal void Flip(ref Otri flipedge)
{
Otri botleft = default(Otri), botright = default(Otri);
Otri topleft = default(Otri), topright = default(Otri);
Otri top = default(Otri);
Otri botlcasing = default(Otri), botrcasing = default(Otri);
Otri toplcasing = default(Otri), toprcasing = default(Otri);
Osub botlsubseg = default(Osub), botrsubseg = default(Osub);
Osub toplsubseg = default(Osub), toprsubseg = default(Osub);
Vertex leftvertex, rightvertex, botvertex;
Vertex farvertex;
// Identify the vertices of the quadrilateral.
rightvertex = flipedge.Org();
leftvertex = flipedge.Dest();
botvertex = flipedge.Apex();
flipedge.Sym(ref top);
// SELF CHECK
//if (top.triangle.id == DUMMY)
//{
// logger.Error("Attempt to flip on boundary.", "Mesh.Flip()");
// flipedge.LnextSelf();
// return;
//}
//if (checksegments)
//{
// flipedge.SegPivot(ref toplsubseg);
// if (toplsubseg.ss != Segment.Empty)
// {
// logger.Error("Attempt to flip a segment.", "Mesh.Flip()");
// flipedge.LnextSelf();
// return;
// }
//}
farvertex = top.Apex();
// Identify the casing of the quadrilateral.
top.Lprev(ref topleft);
topleft.Sym(ref toplcasing);
top.Lnext(ref topright);
topright.Sym(ref toprcasing);
flipedge.Lnext(ref botleft);
botleft.Sym(ref botlcasing);
flipedge.Lprev(ref botright);
botright.Sym(ref botrcasing);
// Rotate the quadrilateral one-quarter turn counterclockwise.
topleft.Bond(ref botlcasing);
botleft.Bond(ref botrcasing);
botright.Bond(ref toprcasing);
topright.Bond(ref toplcasing);
if (checksegments)
{
// Check for subsegments and rebond them to the quadrilateral.
topleft.Pivot(ref toplsubseg);
botleft.Pivot(ref botlsubseg);
botright.Pivot(ref botrsubseg);
topright.Pivot(ref toprsubseg);
if (toplsubseg.seg.hash == DUMMY)
{
topright.SegDissolve(dummysub);
}
else
{
topright.SegBond(ref toplsubseg);
}
if (botlsubseg.seg.hash == DUMMY)
{
topleft.SegDissolve(dummysub);
}
else
{
topleft.SegBond(ref botlsubseg);
}
if (botrsubseg.seg.hash == DUMMY)
{
botleft.SegDissolve(dummysub);
}
else
{
botleft.SegBond(ref botrsubseg);
}
if (toprsubseg.seg.hash == DUMMY)
{
botright.SegDissolve(dummysub);
}
else
{
botright.SegBond(ref toprsubseg);
}
}
// New vertex assignments for the rotated quadrilateral.
flipedge.SetOrg(farvertex);
flipedge.SetDest(botvertex);
flipedge.SetApex(rightvertex);
top.SetOrg(botvertex);
top.SetDest(farvertex);
top.SetApex(leftvertex);
}
/// <summary>
/// Transform two triangles to two different triangles by flipping an edge
/// clockwise within a quadrilateral. Reverses the flip() operation so that
/// the data structures representing the triangles are back where they were
/// before the flip().
/// </summary>
/// <param name="flipedge"></param>
/// <remarks>
/// See above Flip() remarks for more information.
///
/// Upon completion of this routine, the 'flipedge' handle holds the edge
/// cd of triangle cdb, and is directed up, from vertex c to vertex d.
/// (Hence, the two triangles have rotated clockwise.)
/// </remarks>
internal void Unflip(ref Otri flipedge)
{
Otri botleft = default(Otri), botright = default(Otri);
Otri topleft = default(Otri), topright = default(Otri);
Otri top = default(Otri);
Otri botlcasing = default(Otri), botrcasing = default(Otri);
Otri toplcasing = default(Otri), toprcasing = default(Otri);
Osub botlsubseg = default(Osub), botrsubseg = default(Osub);
Osub toplsubseg = default(Osub), toprsubseg = default(Osub);
Vertex leftvertex, rightvertex, botvertex;
Vertex farvertex;
// Identify the vertices of the quadrilateral.
rightvertex = flipedge.Org();
leftvertex = flipedge.Dest();
botvertex = flipedge.Apex();
flipedge.Sym(ref top);
farvertex = top.Apex();
// Identify the casing of the quadrilateral.
top.Lprev(ref topleft);
topleft.Sym(ref toplcasing);
top.Lnext(ref topright);
topright.Sym(ref toprcasing);
flipedge.Lnext(ref botleft);
botleft.Sym(ref botlcasing);
flipedge.Lprev(ref botright);
botright.Sym(ref botrcasing);
// Rotate the quadrilateral one-quarter turn clockwise.
topleft.Bond(ref toprcasing);
botleft.Bond(ref toplcasing);
botright.Bond(ref botlcasing);
topright.Bond(ref botrcasing);
if (checksegments)
{
// Check for subsegments and rebond them to the quadrilateral.
topleft.Pivot(ref toplsubseg);
botleft.Pivot(ref botlsubseg);
botright.Pivot(ref botrsubseg);
topright.Pivot(ref toprsubseg);
if (toplsubseg.seg.hash == DUMMY)
{
botleft.SegDissolve(dummysub);
}
else
{
botleft.SegBond(ref toplsubseg);
}
if (botlsubseg.seg.hash == DUMMY)
{
botright.SegDissolve(dummysub);
}
else
{
botright.SegBond(ref botlsubseg);
}
if (botrsubseg.seg.hash == DUMMY)
{
topright.SegDissolve(dummysub);
}
else
{
topright.SegBond(ref botrsubseg);
}
if (toprsubseg.seg.hash == DUMMY)
{
topleft.SegDissolve(dummysub);
}
else
{
topleft.SegBond(ref toprsubseg);
}
}
// New vertex assignments for the rotated quadrilateral.
flipedge.SetOrg(botvertex);
flipedge.SetDest(farvertex);
flipedge.SetApex(leftvertex);
top.SetOrg(farvertex);
top.SetDest(botvertex);
top.SetApex(rightvertex);
}
/// <summary>
/// Find the Delaunay triangulation of a polygon that has a certain "nice" shape.
/// This includes the polygons that result from deletion of a vertex or insertion
/// of a segment.
/// </summary>
/// <param name="firstedge">The primary edge of the first triangle.</param>
/// <param name="lastedge">The primary edge of the last triangle.</param>
/// <param name="edgecount">The number of sides of the polygon, including its
/// base.</param>
/// <param name="doflip">A flag, wether to perform the last flip.</param>
/// <param name="triflaws">A flag that determines whether the new triangles should
/// be tested for quality, and enqueued if they are bad.</param>
/// <remarks>
// This is a conceptually difficult routine. The starting assumption is
// that we have a polygon with n sides. n - 1 of these sides are currently
// represented as edges in the mesh. One side, called the "base", need not
// be.
//
// Inside the polygon is a structure I call a "fan", consisting of n - 1
// triangles that share a common origin. For each of these triangles, the
// edge opposite the origin is one of the sides of the polygon. The
// primary edge of each triangle is the edge directed from the origin to
// the destination; note that this is not the same edge that is a side of
// the polygon. 'firstedge' is the primary edge of the first triangle.
// From there, the triangles follow in counterclockwise order about the
// polygon, until 'lastedge', the primary edge of the last triangle.
// 'firstedge' and 'lastedge' are probably connected to other triangles
// beyond the extremes of the fan, but their identity is not important, as
// long as the fan remains connected to them.
//
// Imagine the polygon oriented so that its base is at the bottom. This
// puts 'firstedge' on the far right, and 'lastedge' on the far left.
// The right vertex of the base is the destination of 'firstedge', and the
// left vertex of the base is the apex of 'lastedge'.
//
// The challenge now is to find the right sequence of edge flips to
// transform the fan into a Delaunay triangulation of the polygon. Each
// edge flip effectively removes one triangle from the fan, committing it
// to the polygon. The resulting polygon has one fewer edge. If 'doflip'
// is set, the final flip will be performed, resulting in a fan of one
// (useless?) triangle. If 'doflip' is not set, the final flip is not
// performed, resulting in a fan of two triangles, and an unfinished
// triangular polygon that is not yet filled out with a single triangle.
// On completion of the routine, 'lastedge' is the last remaining triangle,
// or the leftmost of the last two.
//
// Although the flips are performed in the order described above, the
// decisions about what flips to perform are made in precisely the reverse
// order. The recursive triangulatepolygon() procedure makes a decision,
// uses up to two recursive calls to triangulate the "subproblems"
// (polygons with fewer edges), and then performs an edge flip.
//
// The "decision" it makes is which vertex of the polygon should be
// connected to the base. This decision is made by testing every possible
// vertex. Once the best vertex is found, the two edges that connect this
// vertex to the base become the bases for two smaller polygons. These
// are triangulated recursively. Unfortunately, this approach can take
// O(n^2) time not only in the worst case, but in many common cases. It's
// rarely a big deal for vertex deletion, where n is rarely larger than
// ten, but it could be a big deal for segment insertion, especially if
// there's a lot of long segments that each cut many triangles. I ought to
// code a faster algorithm some day.
/// </remarks>
private void TriangulatePolygon(Otri firstedge, Otri lastedge,
int edgecount, bool doflip, bool triflaws)
{
Otri testtri = default(Otri);
Otri besttri = default(Otri);
Otri tempedge = default(Otri);
Vertex leftbasevertex, rightbasevertex;
Vertex testvertex;
Vertex bestvertex;
int bestnumber = 1;
// Identify the base vertices.
leftbasevertex = lastedge.Apex();
rightbasevertex = firstedge.Dest();
// Find the best vertex to connect the base to.
firstedge.Onext(ref besttri);
bestvertex = besttri.Dest();
besttri.Copy(ref testtri);
for (int i = 2; i <= edgecount - 2; i++)
{
testtri.Onext();
testvertex = testtri.Dest();
// Is this a better vertex?
if (predicates.InCircle(leftbasevertex, rightbasevertex, bestvertex, testvertex) > 0.0)
{
testtri.Copy(ref besttri);
bestvertex = testvertex;
bestnumber = i;
}
}
if (bestnumber > 1)
{
// Recursively triangulate the smaller polygon on the right.
besttri.Oprev(ref tempedge);
TriangulatePolygon(firstedge, tempedge, bestnumber + 1, true, triflaws);
}
if (bestnumber < edgecount - 2)
{
// Recursively triangulate the smaller polygon on the left.
besttri.Sym(ref tempedge);
TriangulatePolygon(besttri, lastedge, edgecount - bestnumber, true, triflaws);
// Find 'besttri' again; it may have been lost to edge flips.
tempedge.Sym(ref besttri);
}
if (doflip)
{
// Do one final edge flip.
Flip(ref besttri);
if (triflaws)
{
// Check the quality of the newly committed triangle.
besttri.Sym(ref testtri);
qualityMesher.TestTriangle(ref testtri);
}
}
// Return the base triangle.
besttri.Copy(ref lastedge);
}
/// <summary>
/// Delete a vertex from a Delaunay triangulation, ensuring that the
/// triangulation remains Delaunay.
/// </summary>
/// <param name="deltri"></param>
/// <remarks>The origin of 'deltri' is deleted. The union of the triangles
/// adjacent to this vertex is a polygon, for which the Delaunay triangulation
/// is found. Two triangles are removed from the mesh.
///
/// Only interior vertices that do not lie on segments or boundaries
/// may be deleted.
/// </remarks>
internal void DeleteVertex(ref Otri deltri)
{
Otri countingtri = default(Otri);
Otri firstedge = default(Otri), lastedge = default(Otri);
Otri deltriright = default(Otri);
Otri lefttri = default(Otri), righttri = default(Otri);
Otri leftcasing = default(Otri), rightcasing = default(Otri);
Osub leftsubseg = default(Osub), rightsubseg = default(Osub);
Vertex delvertex;
Vertex neworg;
int edgecount;
delvertex = deltri.Org();
VertexDealloc(delvertex);
// Count the degree of the vertex being deleted.
deltri.Onext(ref countingtri);
edgecount = 1;
while (!deltri.Equals(countingtri))
{
edgecount++;
countingtri.Onext();
}
if (edgecount > 3)
{
// Triangulate the polygon defined by the union of all triangles
// adjacent to the vertex being deleted. Check the quality of
// the resulting triangles.
deltri.Onext(ref firstedge);
deltri.Oprev(ref lastedge);
TriangulatePolygon(firstedge, lastedge, edgecount, false, behavior.NoBisect == 0);
}
// Splice out two triangles.
deltri.Lprev(ref deltriright);
deltri.Dnext(ref lefttri);
lefttri.Sym(ref leftcasing);
deltriright.Oprev(ref righttri);
righttri.Sym(ref rightcasing);
deltri.Bond(ref leftcasing);
deltriright.Bond(ref rightcasing);
lefttri.Pivot(ref leftsubseg);
if (leftsubseg.seg.hash != DUMMY)
{
deltri.SegBond(ref leftsubseg);
}
righttri.Pivot(ref rightsubseg);
if (rightsubseg.seg.hash != DUMMY)
{
deltriright.SegBond(ref rightsubseg);
}
// Set the new origin of 'deltri' and check its quality.
neworg = lefttri.Org();
deltri.SetOrg(neworg);
if (behavior.NoBisect == 0)
{
qualityMesher.TestTriangle(ref deltri);
}
// Delete the two spliced-out triangles.
TriangleDealloc(lefttri.tri);
TriangleDealloc(righttri.tri);
}
/// <summary>
/// Undo the most recent vertex insertion.
/// </summary>
/// <remarks>
/// Walks through the list of transformations (flips and a vertex insertion)
/// in the reverse of the order in which they were done, and undoes them.
/// The inserted vertex is removed from the triangulation and deallocated.
/// Two triangles (possibly just one) are also deallocated.
/// </remarks>
internal void UndoVertex()
{
Otri fliptri;
Otri botleft = default(Otri), botright = default(Otri), topright = default(Otri);
Otri botlcasing = default(Otri), botrcasing = default(Otri), toprcasing = default(Otri);
Otri gluetri = default(Otri);
Osub botlsubseg = default(Osub), botrsubseg = default(Osub), toprsubseg = default(Osub);
Vertex botvertex, rightvertex;
// Walk through the list of transformations (flips and a vertex insertion)
// in the reverse of the order in which they were done, and undo them.
while (flipstack.Count > 0)
{
// Find a triangle involved in the last unreversed transformation.
fliptri = flipstack.Pop();
// We are reversing one of three transformations: a trisection of one
// triangle into three (by inserting a vertex in the triangle), a
// bisection of two triangles into four (by inserting a vertex in an
// edge), or an edge flip.
if (flipstack.Count == 0)
{
// Restore a triangle that was split into three triangles,
// so it is again one triangle.
fliptri.Dprev(ref botleft);
botleft.Lnext();
fliptri.Onext(ref botright);
botright.Lprev();
botleft.Sym(ref botlcasing);
botright.Sym(ref botrcasing);
botvertex = botleft.Dest();
fliptri.SetApex(botvertex);
fliptri.Lnext();
fliptri.Bond(ref botlcasing);
botleft.Pivot(ref botlsubseg);
fliptri.SegBond(ref botlsubseg);
fliptri.Lnext();
fliptri.Bond(ref botrcasing);
botright.Pivot(ref botrsubseg);
fliptri.SegBond(ref botrsubseg);
// Delete the two spliced-out triangles.
TriangleDealloc(botleft.tri);
TriangleDealloc(botright.tri);
}
else if (flipstack.Peek().tri == null) // Dummy flip
{
// Restore two triangles that were split into four triangles,
// so they are again two triangles.
fliptri.Lprev(ref gluetri);
gluetri.Sym(ref botright);
botright.Lnext();
botright.Sym(ref botrcasing);
rightvertex = botright.Dest();
fliptri.SetOrg(rightvertex);
gluetri.Bond(ref botrcasing);
botright.Pivot(ref botrsubseg);
gluetri.SegBond(ref botrsubseg);
// Delete the spliced-out triangle.
TriangleDealloc(botright.tri);
fliptri.Sym(ref gluetri);
if (gluetri.tri.id != DUMMY)
{
gluetri.Lnext();
gluetri.Dnext(ref topright);
topright.Sym(ref toprcasing);
gluetri.SetOrg(rightvertex);
gluetri.Bond(ref toprcasing);
topright.Pivot(ref toprsubseg);
gluetri.SegBond(ref toprsubseg);
// Delete the spliced-out triangle.
TriangleDealloc(topright.tri);
}
flipstack.Clear();
}
else
{
// Undo an edge flip.
Unflip(ref fliptri);
}
}
}
#endregion
#region Dealloc
/// <summary>
/// Deallocate space for a triangle, marking it dead.
/// </summary>
/// <param name="dyingtriangle"></param>
internal void TriangleDealloc(Triangle dyingtriangle)
{
// Mark the triangle as dead. This makes it possible to detect dead
// triangles when traversing the list of all triangles.
Otri.Kill(dyingtriangle);
triangles.Release(dyingtriangle);
}
/// <summary>
/// Deallocate space for a vertex, marking it dead.
/// </summary>
/// <param name="dyingvertex"></param>
internal void VertexDealloc(Vertex dyingvertex)
{
// Mark the vertex as dead. This makes it possible to detect dead
// vertices when traversing the list of all vertices.
dyingvertex.type = VertexType.DeadVertex;
vertices.Remove(dyingvertex.hash);
}
/// <summary>
/// Deallocate space for a subsegment, marking it dead.
/// </summary>
/// <param name="dyingsubseg"></param>
internal void SubsegDealloc(SubSegment dyingsubseg)
{
// Mark the subsegment as dead. This makes it possible to detect dead
// subsegments when traversing the list of all subsegments.
Osub.Kill(dyingsubseg);
subsegs.Remove(dyingsubseg.hash);
}
#endregion
}
}