// ----------------------------------------------------------------------- // // Original Matlab code by John Burkardt, Florida State University // Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/ // // ----------------------------------------------------------------------- namespace TriangleNet.Tools { using System; /// /// The adjacency matrix of the mesh. /// public class AdjacencyMatrix { // Number of adjacency entries. int nnz; // Pointers into the actual adjacency structure adj. Information about row k is // stored in entries pcol(k) through pcol(k+1)-1 of adj. Size: N + 1 int[] pcol; // The adjacency structure. For each row, it contains the column indices // of the nonzero entries. Size: nnz int[] irow; /// /// Gets the number of columns (nodes of the mesh). /// public readonly int N; /// /// Gets the column pointers. /// public int[] ColumnPointers { get { return pcol; } } /// /// Gets the row indices. /// public int[] RowIndices { get { return irow; } } public AdjacencyMatrix(Mesh mesh) { this.N = mesh.vertices.Count; // Set up the adj_row adjacency pointer array. this.pcol = AdjacencyCount(mesh); this.nnz = pcol[N]; // Set up the adj adjacency array. this.irow = AdjacencySet(mesh, this.pcol); SortIndices(); } public AdjacencyMatrix(int[] pcol, int[] irow) { this.N = pcol.Length - 1; this.nnz = pcol[N]; this.pcol = pcol; this.irow = irow; if (pcol[0] != 0) { throw new ArgumentException("Expected 0-based indexing.", "pcol"); } if (irow.Length < nnz) { throw new ArgumentException(); } } /// /// Computes the bandwidth of an adjacency matrix. /// /// Bandwidth of the adjacency matrix. public int Bandwidth() { int band_hi; int band_lo; int col; int i, j; band_lo = 0; band_hi = 0; for (i = 0; i < N; i++) { for (j = pcol[i]; j < pcol[i + 1]; j++) { col = irow[j]; band_lo = Math.Max(band_lo, i - col); band_hi = Math.Max(band_hi, col - i); } } return band_lo + 1 + band_hi; } #region Adjacency matrix /// /// Counts adjacencies in a triangulation. /// /// /// This routine is called to count the adjacencies, so that the /// appropriate amount of memory can be set aside for storage when /// the adjacency structure is created. /// /// The triangulation is assumed to involve 3-node triangles. /// /// Two nodes are "adjacent" if they are both nodes in some triangle. /// Also, a node is considered to be adjacent to itself. /// int[] AdjacencyCount(Mesh mesh) { int n = N; int n1, n2, n3; int tid, nid; int[] pcol = new int[n + 1]; // Set every node to be adjacent to itself. for (int i = 0; i < n; i++) { pcol[i] = 1; } // Examine each triangle. foreach (var tri in mesh.triangles) { tid = tri.id; n1 = tri.vertices[0].id; n2 = tri.vertices[1].id; n3 = tri.vertices[2].id; // Add edge (1,2) if this is the first occurrence, that is, if // the edge (1,2) is on a boundary (nid <= 0) or if this triangle // is the first of the pair in which the edge occurs (tid < nid). nid = tri.neighbors[2].tri.id; if (nid < 0 || tid < nid) { pcol[n1] += 1; pcol[n2] += 1; } // Add edge (2,3). nid = tri.neighbors[0].tri.id; if (nid < 0 || tid < nid) { pcol[n2] += 1; pcol[n3] += 1; } // Add edge (3,1). nid = tri.neighbors[1].tri.id; if (nid < 0 || tid < nid) { pcol[n3] += 1; pcol[n1] += 1; } } // We used PCOL to count the number of entries in each column. // Convert it to pointers into the ADJ array. for (int i = n; i > 0; i--) { pcol[i] = pcol[i - 1]; } pcol[0] = 0; for (int i = 1; i <= n; i++) { pcol[i] = pcol[i - 1] + pcol[i]; } return pcol; } /// /// Sets adjacencies in a triangulation. /// /// /// This routine can be used to create the compressed column storage /// for a linear triangle finite element discretization of Poisson's /// equation in two dimensions. /// int[] AdjacencySet(Mesh mesh, int[] pcol) { int n = this.N; int[] col = new int[n]; // Copy of the adjacency rows input. Array.Copy(pcol, col, n); int i, nnz = pcol[n]; // Output list, stores the actual adjacency information. int[] list = new int[nnz]; // Set every node to be adjacent to itself. for (i = 0; i < n; i++) { list[col[i]] = i; col[i] += 1; } int n1, n2, n3; // Vertex numbers. int tid, nid; // Triangle and neighbor id. // Examine each triangle. foreach (var tri in mesh.triangles) { tid = tri.id; n1 = tri.vertices[0].id; n2 = tri.vertices[1].id; n3 = tri.vertices[2].id; // Add edge (1,2) if this is the first occurrence, that is, if // the edge (1,2) is on a boundary (nid <= 0) or if this triangle // is the first of the pair in which the edge occurs (tid < nid). nid = tri.neighbors[2].tri.id; if (nid < 0 || tid < nid) { list[col[n1]++] = n2; list[col[n2]++] = n1; } // Add edge (2,3). nid = tri.neighbors[0].tri.id; if (nid < 0 || tid < nid) { list[col[n2]++] = n3; list[col[n3]++] = n2; } // Add edge (3,1). nid = tri.neighbors[1].tri.id; if (nid < 0 || tid < nid) { list[col[n1]++] = n3; list[col[n3]++] = n1; } } return list; } public void SortIndices() { int k1, k2, n = N; int[] list = this.irow; // Ascending sort the entries for each column. for (int i = 0; i < n; i++) { k1 = pcol[i]; k2 = pcol[i + 1]; Array.Sort(list, k1, k2 - k1); } } #endregion } }