// -----------------------------------------------------------------------
//
// Original Matlab code by John Burkardt, Florida State University
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
//
// -----------------------------------------------------------------------
namespace TriangleNet.Tools
{
using System;
///
/// The adjacency matrix of the mesh.
///
public class AdjacencyMatrix
{
// Number of adjacency entries.
int nnz;
// Pointers into the actual adjacency structure adj. Information about row k is
// stored in entries pcol(k) through pcol(k+1)-1 of adj. Size: N + 1
int[] pcol;
// The adjacency structure. For each row, it contains the column indices
// of the nonzero entries. Size: nnz
int[] irow;
///
/// Gets the number of columns (nodes of the mesh).
///
public readonly int N;
///
/// Gets the column pointers.
///
public int[] ColumnPointers
{
get { return pcol; }
}
///
/// Gets the row indices.
///
public int[] RowIndices
{
get { return irow; }
}
public AdjacencyMatrix(Mesh mesh)
{
this.N = mesh.vertices.Count;
// Set up the adj_row adjacency pointer array.
this.pcol = AdjacencyCount(mesh);
this.nnz = pcol[N];
// Set up the adj adjacency array.
this.irow = AdjacencySet(mesh, this.pcol);
SortIndices();
}
public AdjacencyMatrix(int[] pcol, int[] irow)
{
this.N = pcol.Length - 1;
this.nnz = pcol[N];
this.pcol = pcol;
this.irow = irow;
if (pcol[0] != 0)
{
throw new ArgumentException("Expected 0-based indexing.", "pcol");
}
if (irow.Length < nnz)
{
throw new ArgumentException();
}
}
///
/// Computes the bandwidth of an adjacency matrix.
///
/// Bandwidth of the adjacency matrix.
public int Bandwidth()
{
int band_hi;
int band_lo;
int col;
int i, j;
band_lo = 0;
band_hi = 0;
for (i = 0; i < N; i++)
{
for (j = pcol[i]; j < pcol[i + 1]; j++)
{
col = irow[j];
band_lo = Math.Max(band_lo, i - col);
band_hi = Math.Max(band_hi, col - i);
}
}
return band_lo + 1 + band_hi;
}
#region Adjacency matrix
///
/// Counts adjacencies in a triangulation.
///
///
/// This routine is called to count the adjacencies, so that the
/// appropriate amount of memory can be set aside for storage when
/// the adjacency structure is created.
///
/// The triangulation is assumed to involve 3-node triangles.
///
/// Two nodes are "adjacent" if they are both nodes in some triangle.
/// Also, a node is considered to be adjacent to itself.
///
int[] AdjacencyCount(Mesh mesh)
{
int n = N;
int n1, n2, n3;
int tid, nid;
int[] pcol = new int[n + 1];
// Set every node to be adjacent to itself.
for (int i = 0; i < n; i++)
{
pcol[i] = 1;
}
// Examine each triangle.
foreach (var tri in mesh.triangles)
{
tid = tri.id;
n1 = tri.vertices[0].id;
n2 = tri.vertices[1].id;
n3 = tri.vertices[2].id;
// Add edge (1,2) if this is the first occurrence, that is, if
// the edge (1,2) is on a boundary (nid <= 0) or if this triangle
// is the first of the pair in which the edge occurs (tid < nid).
nid = tri.neighbors[2].tri.id;
if (nid < 0 || tid < nid)
{
pcol[n1] += 1;
pcol[n2] += 1;
}
// Add edge (2,3).
nid = tri.neighbors[0].tri.id;
if (nid < 0 || tid < nid)
{
pcol[n2] += 1;
pcol[n3] += 1;
}
// Add edge (3,1).
nid = tri.neighbors[1].tri.id;
if (nid < 0 || tid < nid)
{
pcol[n3] += 1;
pcol[n1] += 1;
}
}
// We used PCOL to count the number of entries in each column.
// Convert it to pointers into the ADJ array.
for (int i = n; i > 0; i--)
{
pcol[i] = pcol[i - 1];
}
pcol[0] = 0;
for (int i = 1; i <= n; i++)
{
pcol[i] = pcol[i - 1] + pcol[i];
}
return pcol;
}
///
/// Sets adjacencies in a triangulation.
///
///
/// This routine can be used to create the compressed column storage
/// for a linear triangle finite element discretization of Poisson's
/// equation in two dimensions.
///
int[] AdjacencySet(Mesh mesh, int[] pcol)
{
int n = this.N;
int[] col = new int[n];
// Copy of the adjacency rows input.
Array.Copy(pcol, col, n);
int i, nnz = pcol[n];
// Output list, stores the actual adjacency information.
int[] list = new int[nnz];
// Set every node to be adjacent to itself.
for (i = 0; i < n; i++)
{
list[col[i]] = i;
col[i] += 1;
}
int n1, n2, n3; // Vertex numbers.
int tid, nid; // Triangle and neighbor id.
// Examine each triangle.
foreach (var tri in mesh.triangles)
{
tid = tri.id;
n1 = tri.vertices[0].id;
n2 = tri.vertices[1].id;
n3 = tri.vertices[2].id;
// Add edge (1,2) if this is the first occurrence, that is, if
// the edge (1,2) is on a boundary (nid <= 0) or if this triangle
// is the first of the pair in which the edge occurs (tid < nid).
nid = tri.neighbors[2].tri.id;
if (nid < 0 || tid < nid)
{
list[col[n1]++] = n2;
list[col[n2]++] = n1;
}
// Add edge (2,3).
nid = tri.neighbors[0].tri.id;
if (nid < 0 || tid < nid)
{
list[col[n2]++] = n3;
list[col[n3]++] = n2;
}
// Add edge (3,1).
nid = tri.neighbors[1].tri.id;
if (nid < 0 || tid < nid)
{
list[col[n1]++] = n3;
list[col[n3]++] = n1;
}
}
return list;
}
public void SortIndices()
{
int k1, k2, n = N;
int[] list = this.irow;
// Ascending sort the entries for each column.
for (int i = 0; i < n; i++)
{
k1 = pcol[i];
k2 = pcol[i + 1];
Array.Sort(list, k1, k2 - k1);
}
}
#endregion
}
}