// ----------------------------------------------------------------------- // // Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html // Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/ // // ----------------------------------------------------------------------- namespace TriangleNet { using System; using TriangleNet.Geometry; using TriangleNet.Tools; /// /// Adaptive exact arithmetic geometric predicates. /// /// /// The adaptive exact arithmetic geometric predicates implemented herein are described in /// detail in the paper "Adaptive Precision Floating-Point Arithmetic and Fast Robust /// Geometric Predicates." by Jonathan Richard Shewchuk, see /// http://www.cs.cmu.edu/~quake/robust.html /// /// The macros of the original C code were automatically expanded using the Visual Studio /// command prompt with the command "CL /P /C EXACT.C", see /// http://msdn.microsoft.com/en-us/library/8z9z0bx6.aspx /// public class RobustPredicates : IPredicates { #region Default predicates instance (Singleton) private static readonly object creationLock = new object(); private static RobustPredicates _default; /// /// Gets the default configuration instance. /// public static RobustPredicates Default { get { if (_default == null) { lock (creationLock) { if (_default == null) { _default = new RobustPredicates(); } } } return _default; } } #endregion #region Static initialization private static double epsilon, splitter, resulterrbound; private static double ccwerrboundA, ccwerrboundB, ccwerrboundC; private static double iccerrboundA, iccerrboundB, iccerrboundC; //private static double o3derrboundA, o3derrboundB, o3derrboundC; /// /// Initialize the variables used for exact arithmetic. /// /// /// 'epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in /// floating-point arithmetic. 'epsilon' bounds the relative roundoff /// error. It is used for floating-point error analysis. /// /// 'splitter' is used to split floating-point numbers into two half- /// length significands for exact multiplication. /// /// I imagine that a highly optimizing compiler might be too smart for its /// own good, and somehow cause this routine to fail, if it pretends that /// floating-point arithmetic is too much like double arithmetic. /// /// Don't change this routine unless you fully understand it. /// static RobustPredicates() { double half; double check, lastcheck; bool every_other; every_other = true; half = 0.5; epsilon = 1.0; splitter = 1.0; check = 1.0; // Repeatedly divide 'epsilon' by two until it is too small to add to // one without causing roundoff. (Also check if the sum is equal to // the previous sum, for machines that round up instead of using exact // rounding. Not that these routines will work on such machines.) do { lastcheck = check; epsilon *= half; if (every_other) { splitter *= 2.0; } every_other = !every_other; check = 1.0 + epsilon; } while ((check != 1.0) && (check != lastcheck)); splitter += 1.0; // Error bounds for orientation and incircle tests. resulterrbound = (3.0 + 8.0 * epsilon) * epsilon; ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon; ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon; ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon; iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon; iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon; iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon; //o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon; //o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon; //o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon; } #endregion public RobustPredicates() { AllocateWorkspace(); } /// /// Check, if the three points appear in counterclockwise order. The result is /// also a rough approximation of twice the signed area of the triangle defined /// by the three points. /// /// Point a. /// Point b. /// Point c. /// Return a positive value if the points pa, pb, and pc occur in /// counterclockwise order; a negative value if they occur in clockwise order; /// and zero if they are collinear. public double CounterClockwise(Point pa, Point pb, Point pc) { double detleft, detright, det; double detsum, errbound; Statistic.CounterClockwiseCount++; detleft = (pa.x - pc.x) * (pb.y - pc.y); detright = (pa.y - pc.y) * (pb.x - pc.x); det = detleft - detright; if (Behavior.NoExact) { return det; } if (detleft > 0.0) { if (detright <= 0.0) { return det; } else { detsum = detleft + detright; } } else if (detleft < 0.0) { if (detright >= 0.0) { return det; } else { detsum = -detleft - detright; } } else { return det; } errbound = ccwerrboundA * detsum; if ((det >= errbound) || (-det >= errbound)) { return det; } Statistic.CounterClockwiseAdaptCount++; return CounterClockwiseAdapt(pa, pb, pc, detsum); } /// /// Check if the point pd lies inside the circle passing through pa, pb, and pc. The /// points pa, pb, and pc must be in counterclockwise order, or the sign of the result /// will be reversed. /// /// Point a. /// Point b. /// Point c. /// Point d. /// Return a positive value if the point pd lies inside the circle passing through /// pa, pb, and pc; a negative value if it lies outside; and zero if the four points /// are cocircular. public double InCircle(Point pa, Point pb, Point pc, Point pd) { double adx, bdx, cdx, ady, bdy, cdy; double bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady; double alift, blift, clift; double det; double permanent, errbound; Statistic.InCircleCount++; adx = pa.x - pd.x; bdx = pb.x - pd.x; cdx = pc.x - pd.x; ady = pa.y - pd.y; bdy = pb.y - pd.y; cdy = pc.y - pd.y; bdxcdy = bdx * cdy; cdxbdy = cdx * bdy; alift = adx * adx + ady * ady; cdxady = cdx * ady; adxcdy = adx * cdy; blift = bdx * bdx + bdy * bdy; adxbdy = adx * bdy; bdxady = bdx * ady; clift = cdx * cdx + cdy * cdy; det = alift * (bdxcdy - cdxbdy) + blift * (cdxady - adxcdy) + clift * (adxbdy - bdxady); if (Behavior.NoExact) { return det; } permanent = (Math.Abs(bdxcdy) + Math.Abs(cdxbdy)) * alift + (Math.Abs(cdxady) + Math.Abs(adxcdy)) * blift + (Math.Abs(adxbdy) + Math.Abs(bdxady)) * clift; errbound = iccerrboundA * permanent; if ((det > errbound) || (-det > errbound)) { return det; } Statistic.InCircleAdaptCount++; return InCircleAdapt(pa, pb, pc, pd, permanent); } /// /// Return a positive value if the point pd is incompatible with the circle /// or plane passing through pa, pb, and pc (meaning that pd is inside the /// circle or below the plane); a negative value if it is compatible; and /// zero if the four points are cocircular/coplanar. The points pa, pb, and /// pc must be in counterclockwise order, or the sign of the result will be /// reversed. /// /// Point a. /// Point b. /// Point c. /// Point d. /// Return a positive value if the point pd lies inside the circle passing through /// pa, pb, and pc; a negative value if it lies outside; and zero if the four points /// are cocircular. public double NonRegular(Point pa, Point pb, Point pc, Point pd) { return InCircle(pa, pb, pc, pd); } /// /// Find the circumcenter of a triangle. /// /// Triangle point. /// Triangle point. /// Triangle point. /// Relative coordinate of new location. /// Relative coordinate of new location. /// Off-center constant. /// Coordinates of the circumcenter (or off-center) public Point FindCircumcenter(Point org, Point dest, Point apex, ref double xi, ref double eta, double offconstant) { double xdo, ydo, xao, yao; double dodist, aodist, dadist; double denominator; double dx, dy, dxoff, dyoff; Statistic.CircumcenterCount++; // Compute the circumcenter of the triangle. xdo = dest.x - org.x; ydo = dest.y - org.y; xao = apex.x - org.x; yao = apex.y - org.y; dodist = xdo * xdo + ydo * ydo; aodist = xao * xao + yao * yao; dadist = (dest.x - apex.x) * (dest.x - apex.x) + (dest.y - apex.y) * (dest.y - apex.y); if (Behavior.NoExact) { denominator = 0.5 / (xdo * yao - xao * ydo); } else { // Use the counterclockwise() routine to ensure a positive (and // reasonably accurate) result, avoiding any possibility of // division by zero. denominator = 0.5 / CounterClockwise(dest, apex, org); // Don't count the above as an orientation test. Statistic.CounterClockwiseCount--; } dx = (yao * dodist - ydo * aodist) * denominator; dy = (xdo * aodist - xao * dodist) * denominator; // Find the (squared) length of the triangle's shortest edge. This // serves as a conservative estimate of the insertion radius of the // circumcenter's parent. The estimate is used to ensure that // the algorithm terminates even if very small angles appear in // the input PSLG. if ((dodist < aodist) && (dodist < dadist)) { if (offconstant > 0.0) { // Find the position of the off-center, as described by Alper Ungor. dxoff = 0.5 * xdo - offconstant * ydo; dyoff = 0.5 * ydo + offconstant * xdo; // If the off-center is closer to the origin than the // circumcenter, use the off-center instead. if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) { dx = dxoff; dy = dyoff; } } } else if (aodist < dadist) { if (offconstant > 0.0) { dxoff = 0.5 * xao + offconstant * yao; dyoff = 0.5 * yao - offconstant * xao; // If the off-center is closer to the origin than the // circumcenter, use the off-center instead. if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) { dx = dxoff; dy = dyoff; } } } else { if (offconstant > 0.0) { dxoff = 0.5 * (apex.x - dest.x) - offconstant * (apex.y - dest.y); dyoff = 0.5 * (apex.y - dest.y) + offconstant * (apex.x - dest.x); // If the off-center is closer to the destination than the // circumcenter, use the off-center instead. if (dxoff * dxoff + dyoff * dyoff < (dx - xdo) * (dx - xdo) + (dy - ydo) * (dy - ydo)) { dx = xdo + dxoff; dy = ydo + dyoff; } } } // To interpolate vertex attributes for the new vertex inserted at // the circumcenter, define a coordinate system with a xi-axis, // directed from the triangle's origin to its destination, and // an eta-axis, directed from its origin to its apex. // Calculate the xi and eta coordinates of the circumcenter. xi = (yao * dx - xao * dy) * (2.0 * denominator); eta = (xdo * dy - ydo * dx) * (2.0 * denominator); return new Point(org.x + dx, org.y + dy); } /// /// Find the circumcenter of a triangle. /// /// Triangle point. /// Triangle point. /// Triangle point. /// Relative coordinate of new location. /// Relative coordinate of new location. /// Coordinates of the circumcenter /// /// The result is returned both in terms of x-y coordinates and xi-eta /// (barycentric) coordinates. The xi-eta coordinate system is defined in /// terms of the triangle: the origin of the triangle is the origin of the /// coordinate system; the destination of the triangle is one unit along the /// xi axis; and the apex of the triangle is one unit along the eta axis. /// This procedure also returns the square of the length of the triangle's /// shortest edge. /// public Point FindCircumcenter(Point org, Point dest, Point apex, ref double xi, ref double eta) { double xdo, ydo, xao, yao; double dodist, aodist; double denominator; double dx, dy; Statistic.CircumcenterCount++; // Compute the circumcenter of the triangle. xdo = dest.x - org.x; ydo = dest.y - org.y; xao = apex.x - org.x; yao = apex.y - org.y; dodist = xdo * xdo + ydo * ydo; aodist = xao * xao + yao * yao; if (Behavior.NoExact) { denominator = 0.5 / (xdo * yao - xao * ydo); } else { // Use the counterclockwise() routine to ensure a positive (and // reasonably accurate) result, avoiding any possibility of // division by zero. denominator = 0.5 / CounterClockwise(dest, apex, org); // Don't count the above as an orientation test. Statistic.CounterClockwiseCount--; } dx = (yao * dodist - ydo * aodist) * denominator; dy = (xdo * aodist - xao * dodist) * denominator; // To interpolate vertex attributes for the new vertex inserted at // the circumcenter, define a coordinate system with a xi-axis, // directed from the triangle's origin to its destination, and // an eta-axis, directed from its origin to its apex. // Calculate the xi and eta coordinates of the circumcenter. xi = (yao * dx - xao * dy) * (2.0 * denominator); eta = (xdo * dy - ydo * dx) * (2.0 * denominator); return new Point(org.x + dx, org.y + dy); } #region Exact arithmetics /// /// Sum two expansions, eliminating zero components from the output expansion. /// /// /// /// /// /// /// /// /// Sets h = e + f. See the Robust Predicates paper for details. /// /// If round-to-even is used (as with IEEE 754), maintains the strongly nonoverlapping /// property. (That is, if e is strongly nonoverlapping, h will be also.) Does NOT /// maintain the nonoverlapping or nonadjacent properties. /// private int FastExpansionSumZeroElim(int elen, double[] e, int flen, double[] f, double[] h) { double Q; double Qnew; double hh; double bvirt; double avirt, bround, around; int eindex, findex, hindex; double enow, fnow; enow = e[0]; fnow = f[0]; eindex = findex = 0; if ((fnow > enow) == (fnow > -enow)) { Q = enow; enow = e[++eindex]; } else { Q = fnow; fnow = f[++findex]; } hindex = 0; if ((eindex < elen) && (findex < flen)) { if ((fnow > enow) == (fnow > -enow)) { Qnew = (double)(enow + Q); bvirt = Qnew - enow; hh = Q - bvirt; enow = e[++eindex]; } else { Qnew = (double)(fnow + Q); bvirt = Qnew - fnow; hh = Q - bvirt; fnow = f[++findex]; } Q = Qnew; if (hh != 0.0) { h[hindex++] = hh; } while ((eindex < elen) && (findex < flen)) { if ((fnow > enow) == (fnow > -enow)) { Qnew = (double)(Q + enow); bvirt = (double)(Qnew - Q); avirt = Qnew - bvirt; bround = enow - bvirt; around = Q - avirt; hh = around + bround; enow = e[++eindex]; } else { Qnew = (double)(Q + fnow); bvirt = (double)(Qnew - Q); avirt = Qnew - bvirt; bround = fnow - bvirt; around = Q - avirt; hh = around + bround; fnow = f[++findex]; } Q = Qnew; if (hh != 0.0) { h[hindex++] = hh; } } } while (eindex < elen) { Qnew = (double)(Q + enow); bvirt = (double)(Qnew - Q); avirt = Qnew - bvirt; bround = enow - bvirt; around = Q - avirt; hh = around + bround; enow = e[++eindex]; Q = Qnew; if (hh != 0.0) { h[hindex++] = hh; } } while (findex < flen) { Qnew = (double)(Q + fnow); bvirt = (double)(Qnew - Q); avirt = Qnew - bvirt; bround = fnow - bvirt; around = Q - avirt; hh = around + bround; fnow = f[++findex]; Q = Qnew; if (hh != 0.0) { h[hindex++] = hh; } } if ((Q != 0.0) || (hindex == 0)) { h[hindex++] = Q; } return hindex; } /// /// Multiply an expansion by a scalar, eliminating zero components from the output expansion. /// /// /// /// /// /// /// /// Sets h = be. See my Robust Predicates paper for details. /// /// Maintains the nonoverlapping property. If round-to-even is used (as with IEEE 754), /// maintains the strongly nonoverlapping and nonadjacent properties as well. (That is, /// if e has one of these properties, so will h.) /// private int ScaleExpansionZeroElim(int elen, double[] e, double b, double[] h) { double Q, sum; double hh; double product1; double product0; int eindex, hindex; double enow; double bvirt; double avirt, bround, around; double c; double abig; double ahi, alo, bhi, blo; double err1, err2, err3; c = (double)(splitter * b); abig = (double)(c - b); bhi = c - abig; blo = b - bhi; Q = (double)(e[0] * b); c = (double)(splitter * e[0]); abig = (double)(c - e[0]); ahi = c - abig; alo = e[0] - ahi; err1 = Q - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); hh = (alo * blo) - err3; hindex = 0; if (hh != 0) { h[hindex++] = hh; } for (eindex = 1; eindex < elen; eindex++) { enow = e[eindex]; product1 = (double)(enow * b); c = (double)(splitter * enow); abig = (double)(c - enow); ahi = c - abig; alo = enow - ahi; err1 = product1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); product0 = (alo * blo) - err3; sum = (double)(Q + product0); bvirt = (double)(sum - Q); avirt = sum - bvirt; bround = product0 - bvirt; around = Q - avirt; hh = around + bround; if (hh != 0) { h[hindex++] = hh; } Q = (double)(product1 + sum); bvirt = Q - product1; hh = sum - bvirt; if (hh != 0) { h[hindex++] = hh; } } if ((Q != 0.0) || (hindex == 0)) { h[hindex++] = Q; } return hindex; } /// /// Produce a one-word estimate of an expansion's value. /// /// /// /// private double Estimate(int elen, double[] e) { double Q; int eindex; Q = e[0]; for (eindex = 1; eindex < elen; eindex++) { Q += e[eindex]; } return Q; } /// /// Return a positive value if the points pa, pb, and pc occur in counterclockwise /// order; a negative value if they occur in clockwise order; and zero if they are /// collinear. The result is also a rough approximation of twice the signed area of /// the triangle defined by the three points. /// /// /// /// /// /// /// /// Uses exact arithmetic if necessary to ensure a correct answer. The result returned /// is the determinant of a matrix. This determinant is computed adaptively, in the /// sense that exact arithmetic is used only to the degree it is needed to ensure that /// the returned value has the correct sign. Hence, this function is usually quite fast, /// but will run more slowly when the input points are collinear or nearly so. /// private double CounterClockwiseAdapt(Point pa, Point pb, Point pc, double detsum) { double acx, acy, bcx, bcy; double acxtail, acytail, bcxtail, bcytail; double detleft, detright; double detlefttail, detrighttail; double det, errbound; // Edited to work around index out of range exceptions (changed array length from 4 to 5). // See unsafe indexing in FastExpansionSumZeroElim. double[] B = new double[5], u = new double[5]; double[] C1 = new double[8], C2 = new double[12], D = new double[16]; double B3; int C1length, C2length, Dlength; double u3; double s1, t1; double s0, t0; double bvirt; double avirt, bround, around; double c; double abig; double ahi, alo, bhi, blo; double err1, err2, err3; double _i, _j; double _0; acx = (double)(pa.x - pc.x); bcx = (double)(pb.x - pc.x); acy = (double)(pa.y - pc.y); bcy = (double)(pb.y - pc.y); detleft = (double)(acx * bcy); c = (double)(splitter * acx); abig = (double)(c - acx); ahi = c - abig; alo = acx - ahi; c = (double)(splitter * bcy); abig = (double)(c - bcy); bhi = c - abig; blo = bcy - bhi; err1 = detleft - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); detlefttail = (alo * blo) - err3; detright = (double)(acy * bcx); c = (double)(splitter * acy); abig = (double)(c - acy); ahi = c - abig; alo = acy - ahi; c = (double)(splitter * bcx); abig = (double)(c - bcx); bhi = c - abig; blo = bcx - bhi; err1 = detright - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); detrighttail = (alo * blo) - err3; _i = (double)(detlefttail - detrighttail); bvirt = (double)(detlefttail - _i); avirt = _i + bvirt; bround = bvirt - detrighttail; around = detlefttail - avirt; B[0] = around + bround; _j = (double)(detleft + _i); bvirt = (double)(_j - detleft); avirt = _j - bvirt; bround = _i - bvirt; around = detleft - avirt; _0 = around + bround; _i = (double)(_0 - detright); bvirt = (double)(_0 - _i); avirt = _i + bvirt; bround = bvirt - detright; around = _0 - avirt; B[1] = around + bround; B3 = (double)(_j + _i); bvirt = (double)(B3 - _j); avirt = B3 - bvirt; bround = _i - bvirt; around = _j - avirt; B[2] = around + bround; B[3] = B3; det = Estimate(4, B); errbound = ccwerrboundB * detsum; if ((det >= errbound) || (-det >= errbound)) { return det; } bvirt = (double)(pa.x - acx); avirt = acx + bvirt; bround = bvirt - pc.x; around = pa.x - avirt; acxtail = around + bround; bvirt = (double)(pb.x - bcx); avirt = bcx + bvirt; bround = bvirt - pc.x; around = pb.x - avirt; bcxtail = around + bround; bvirt = (double)(pa.y - acy); avirt = acy + bvirt; bround = bvirt - pc.y; around = pa.y - avirt; acytail = around + bround; bvirt = (double)(pb.y - bcy); avirt = bcy + bvirt; bround = bvirt - pc.y; around = pb.y - avirt; bcytail = around + bround; if ((acxtail == 0.0) && (acytail == 0.0) && (bcxtail == 0.0) && (bcytail == 0.0)) { return det; } errbound = ccwerrboundC * detsum + resulterrbound * ((det) >= 0.0 ? (det) : -(det)); det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail); if ((det >= errbound) || (-det >= errbound)) { return det; } s1 = (double)(acxtail * bcy); c = (double)(splitter * acxtail); abig = (double)(c - acxtail); ahi = c - abig; alo = acxtail - ahi; c = (double)(splitter * bcy); abig = (double)(c - bcy); bhi = c - abig; blo = bcy - bhi; err1 = s1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); s0 = (alo * blo) - err3; t1 = (double)(acytail * bcx); c = (double)(splitter * acytail); abig = (double)(c - acytail); ahi = c - abig; alo = acytail - ahi; c = (double)(splitter * bcx); abig = (double)(c - bcx); bhi = c - abig; blo = bcx - bhi; err1 = t1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); t0 = (alo * blo) - err3; _i = (double)(s0 - t0); bvirt = (double)(s0 - _i); avirt = _i + bvirt; bround = bvirt - t0; around = s0 - avirt; u[0] = around + bround; _j = (double)(s1 + _i); bvirt = (double)(_j - s1); avirt = _j - bvirt; bround = _i - bvirt; around = s1 - avirt; _0 = around + bround; _i = (double)(_0 - t1); bvirt = (double)(_0 - _i); avirt = _i + bvirt; bround = bvirt - t1; around = _0 - avirt; u[1] = around + bround; u3 = (double)(_j + _i); bvirt = (double)(u3 - _j); avirt = u3 - bvirt; bround = _i - bvirt; around = _j - avirt; u[2] = around + bround; u[3] = u3; C1length = FastExpansionSumZeroElim(4, B, 4, u, C1); s1 = (double)(acx * bcytail); c = (double)(splitter * acx); abig = (double)(c - acx); ahi = c - abig; alo = acx - ahi; c = (double)(splitter * bcytail); abig = (double)(c - bcytail); bhi = c - abig; blo = bcytail - bhi; err1 = s1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); s0 = (alo * blo) - err3; t1 = (double)(acy * bcxtail); c = (double)(splitter * acy); abig = (double)(c - acy); ahi = c - abig; alo = acy - ahi; c = (double)(splitter * bcxtail); abig = (double)(c - bcxtail); bhi = c - abig; blo = bcxtail - bhi; err1 = t1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); t0 = (alo * blo) - err3; _i = (double)(s0 - t0); bvirt = (double)(s0 - _i); avirt = _i + bvirt; bround = bvirt - t0; around = s0 - avirt; u[0] = around + bround; _j = (double)(s1 + _i); bvirt = (double)(_j - s1); avirt = _j - bvirt; bround = _i - bvirt; around = s1 - avirt; _0 = around + bround; _i = (double)(_0 - t1); bvirt = (double)(_0 - _i); avirt = _i + bvirt; bround = bvirt - t1; around = _0 - avirt; u[1] = around + bround; u3 = (double)(_j + _i); bvirt = (double)(u3 - _j); avirt = u3 - bvirt; bround = _i - bvirt; around = _j - avirt; u[2] = around + bround; u[3] = u3; C2length = FastExpansionSumZeroElim(C1length, C1, 4, u, C2); s1 = (double)(acxtail * bcytail); c = (double)(splitter * acxtail); abig = (double)(c - acxtail); ahi = c - abig; alo = acxtail - ahi; c = (double)(splitter * bcytail); abig = (double)(c - bcytail); bhi = c - abig; blo = bcytail - bhi; err1 = s1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); s0 = (alo * blo) - err3; t1 = (double)(acytail * bcxtail); c = (double)(splitter * acytail); abig = (double)(c - acytail); ahi = c - abig; alo = acytail - ahi; c = (double)(splitter * bcxtail); abig = (double)(c - bcxtail); bhi = c - abig; blo = bcxtail - bhi; err1 = t1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); t0 = (alo * blo) - err3; _i = (double)(s0 - t0); bvirt = (double)(s0 - _i); avirt = _i + bvirt; bround = bvirt - t0; around = s0 - avirt; u[0] = around + bround; _j = (double)(s1 + _i); bvirt = (double)(_j - s1); avirt = _j - bvirt; bround = _i - bvirt; around = s1 - avirt; _0 = around + bround; _i = (double)(_0 - t1); bvirt = (double)(_0 - _i); avirt = _i + bvirt; bround = bvirt - t1; around = _0 - avirt; u[1] = around + bround; u3 = (double)(_j + _i); bvirt = (double)(u3 - _j); avirt = u3 - bvirt; bround = _i - bvirt; around = _j - avirt; u[2] = around + bround; u[3] = u3; Dlength = FastExpansionSumZeroElim(C2length, C2, 4, u, D); return (D[Dlength - 1]); } /// /// Return a positive value if the point pd lies inside the circle passing through /// pa, pb, and pc; a negative value if it lies outside; and zero if the four points /// are cocircular. The points pa, pb, and pc must be in counterclockwise order, or /// the sign of the result will be reversed. /// /// /// /// /// /// /// /// /// Uses exact arithmetic if necessary to ensure a correct answer. The result returned /// is the determinant of a matrix. This determinant is computed adaptively, in the /// sense that exact arithmetic is used only to the degree it is needed to ensure that /// the returned value has the correct sign. Hence, this function is usually quite fast, /// but will run more slowly when the input points are cocircular or nearly so. /// private double InCircleAdapt(Point pa, Point pb, Point pc, Point pd, double permanent) { double adx, bdx, cdx, ady, bdy, cdy; double det, errbound; double bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1; double bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0; double[] bc = new double[4], ca = new double[4], ab = new double[4]; double bc3, ca3, ab3; int axbclen, axxbclen, aybclen, ayybclen, alen; int bxcalen, bxxcalen, bycalen, byycalen, blen; int cxablen, cxxablen, cyablen, cyyablen, clen; int ablen; double[] finnow, finother, finswap; int finlength; double adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail; double adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1; double adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0; double[] aa = new double[4], bb = new double[4], cc = new double[4]; double aa3, bb3, cc3; double ti1, tj1; double ti0, tj0; // Edited to work around index out of range exceptions (changed array length from 4 to 5). // See unsafe indexing in FastExpansionSumZeroElim. double[] u = new double[5], v = new double[5]; double u3, v3; int temp8len, temp16alen, temp16blen, temp16clen; int temp32alen, temp32blen, temp48len, temp64len; double[] axtbb = new double[8], axtcc = new double[8], aytbb = new double[8], aytcc = new double[8]; int axtbblen, axtcclen, aytbblen, aytcclen; double[] bxtaa = new double[8], bxtcc = new double[8], bytaa = new double[8], bytcc = new double[8]; int bxtaalen, bxtcclen, bytaalen, bytcclen; double[] cxtaa = new double[8], cxtbb = new double[8], cytaa = new double[8], cytbb = new double[8]; int cxtaalen, cxtbblen, cytaalen, cytbblen; double[] axtbc = new double[8], aytbc = new double[8], bxtca = new double[8], bytca = new double[8], cxtab = new double[8], cytab = new double[8]; int axtbclen = 0, aytbclen = 0, bxtcalen = 0, bytcalen = 0, cxtablen = 0, cytablen = 0; double[] axtbct = new double[16], aytbct = new double[16], bxtcat = new double[16], bytcat = new double[16], cxtabt = new double[16], cytabt = new double[16]; int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen; double[] axtbctt = new double[8], aytbctt = new double[8], bxtcatt = new double[8]; double[] bytcatt = new double[8], cxtabtt = new double[8], cytabtt = new double[8]; int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen; double[] abt = new double[8], bct = new double[8], cat = new double[8]; int abtlen, bctlen, catlen; double[] abtt = new double[4], bctt = new double[4], catt = new double[4]; int abttlen, bcttlen, cattlen; double abtt3, bctt3, catt3; double negate; double bvirt; double avirt, bround, around; double c; double abig; double ahi, alo, bhi, blo; double err1, err2, err3; double _i, _j; double _0; adx = (double)(pa.x - pd.x); bdx = (double)(pb.x - pd.x); cdx = (double)(pc.x - pd.x); ady = (double)(pa.y - pd.y); bdy = (double)(pb.y - pd.y); cdy = (double)(pc.y - pd.y); adx = (double)(pa.x - pd.x); bdx = (double)(pb.x - pd.x); cdx = (double)(pc.x - pd.x); ady = (double)(pa.y - pd.y); bdy = (double)(pb.y - pd.y); cdy = (double)(pc.y - pd.y); bdxcdy1 = (double)(bdx * cdy); c = (double)(splitter * bdx); abig = (double)(c - bdx); ahi = c - abig; alo = bdx - ahi; c = (double)(splitter * cdy); abig = (double)(c - cdy); bhi = c - abig; blo = cdy - bhi; err1 = bdxcdy1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); bdxcdy0 = (alo * blo) - err3; cdxbdy1 = (double)(cdx * bdy); c = (double)(splitter * cdx); abig = (double)(c - cdx); ahi = c - abig; alo = cdx - ahi; c = (double)(splitter * bdy); abig = (double)(c - bdy); bhi = c - abig; blo = bdy - bhi; err1 = cdxbdy1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); cdxbdy0 = (alo * blo) - err3; _i = (double)(bdxcdy0 - cdxbdy0); bvirt = (double)(bdxcdy0 - _i); avirt = _i + bvirt; bround = bvirt - cdxbdy0; around = bdxcdy0 - avirt; bc[0] = around + bround; _j = (double)(bdxcdy1 + _i); bvirt = (double)(_j - bdxcdy1); avirt = _j - bvirt; bround = _i - bvirt; around = bdxcdy1 - avirt; _0 = around + bround; _i = (double)(_0 - cdxbdy1); bvirt = (double)(_0 - _i); avirt = _i + bvirt; bround = bvirt - cdxbdy1; around = _0 - avirt; bc[1] = around + bround; bc3 = (double)(_j + _i); bvirt = (double)(bc3 - _j); avirt = bc3 - bvirt; bround = _i - bvirt; around = _j - avirt; bc[2] = around + bround; bc[3] = bc3; axbclen = ScaleExpansionZeroElim(4, bc, adx, axbc); axxbclen = ScaleExpansionZeroElim(axbclen, axbc, adx, axxbc); aybclen = ScaleExpansionZeroElim(4, bc, ady, aybc); ayybclen = ScaleExpansionZeroElim(aybclen, aybc, ady, ayybc); alen = FastExpansionSumZeroElim(axxbclen, axxbc, ayybclen, ayybc, adet); cdxady1 = (double)(cdx * ady); c = (double)(splitter * cdx); abig = (double)(c - cdx); ahi = c - abig; alo = cdx - ahi; c = (double)(splitter * ady); abig = (double)(c - ady); bhi = c - abig; blo = ady - bhi; err1 = cdxady1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); cdxady0 = (alo * blo) - err3; adxcdy1 = (double)(adx * cdy); c = (double)(splitter * adx); abig = (double)(c - adx); ahi = c - abig; alo = adx - ahi; c = (double)(splitter * cdy); abig = (double)(c - cdy); bhi = c - abig; blo = cdy - bhi; err1 = adxcdy1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); adxcdy0 = (alo * blo) - err3; _i = (double)(cdxady0 - adxcdy0); bvirt = (double)(cdxady0 - _i); avirt = _i + bvirt; bround = bvirt - adxcdy0; around = cdxady0 - avirt; ca[0] = around + bround; _j = (double)(cdxady1 + _i); bvirt = (double)(_j - cdxady1); avirt = _j - bvirt; bround = _i - bvirt; around = cdxady1 - avirt; _0 = around + bround; _i = (double)(_0 - adxcdy1); bvirt = (double)(_0 - _i); avirt = _i + bvirt; bround = bvirt - adxcdy1; around = _0 - avirt; ca[1] = around + bround; ca3 = (double)(_j + _i); bvirt = (double)(ca3 - _j); avirt = ca3 - bvirt; bround = _i - bvirt; around = _j - avirt; ca[2] = around + bround; ca[3] = ca3; bxcalen = ScaleExpansionZeroElim(4, ca, bdx, bxca); bxxcalen = ScaleExpansionZeroElim(bxcalen, bxca, bdx, bxxca); bycalen = ScaleExpansionZeroElim(4, ca, bdy, byca); byycalen = ScaleExpansionZeroElim(bycalen, byca, bdy, byyca); blen = FastExpansionSumZeroElim(bxxcalen, bxxca, byycalen, byyca, bdet); adxbdy1 = (double)(adx * bdy); c = (double)(splitter * adx); abig = (double)(c - adx); ahi = c - abig; alo = adx - ahi; c = (double)(splitter * bdy); abig = (double)(c - bdy); bhi = c - abig; blo = bdy - bhi; err1 = adxbdy1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); adxbdy0 = (alo * blo) - err3; bdxady1 = (double)(bdx * ady); c = (double)(splitter * bdx); abig = (double)(c - bdx); ahi = c - abig; alo = bdx - ahi; c = (double)(splitter * ady); abig = (double)(c - ady); bhi = c - abig; blo = ady - bhi; err1 = bdxady1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); bdxady0 = (alo * blo) - err3; _i = (double)(adxbdy0 - bdxady0); bvirt = (double)(adxbdy0 - _i); avirt = _i + bvirt; bround = bvirt - bdxady0; around = adxbdy0 - avirt; ab[0] = around + bround; _j = (double)(adxbdy1 + _i); bvirt = (double)(_j - adxbdy1); avirt = _j - bvirt; bround = _i - bvirt; around = adxbdy1 - avirt; _0 = around + bround; _i = (double)(_0 - bdxady1); bvirt = (double)(_0 - _i); avirt = _i + bvirt; bround = bvirt - bdxady1; around = _0 - avirt; ab[1] = around + bround; ab3 = (double)(_j + _i); bvirt = (double)(ab3 - _j); avirt = ab3 - bvirt; bround = _i - bvirt; around = _j - avirt; ab[2] = around + bround; ab[3] = ab3; cxablen = ScaleExpansionZeroElim(4, ab, cdx, cxab); cxxablen = ScaleExpansionZeroElim(cxablen, cxab, cdx, cxxab); cyablen = ScaleExpansionZeroElim(4, ab, cdy, cyab); cyyablen = ScaleExpansionZeroElim(cyablen, cyab, cdy, cyyab); clen = FastExpansionSumZeroElim(cxxablen, cxxab, cyyablen, cyyab, cdet); ablen = FastExpansionSumZeroElim(alen, adet, blen, bdet, abdet); finlength = FastExpansionSumZeroElim(ablen, abdet, clen, cdet, fin1); det = Estimate(finlength, fin1); errbound = iccerrboundB * permanent; if ((det >= errbound) || (-det >= errbound)) { return det; } bvirt = (double)(pa.x - adx); avirt = adx + bvirt; bround = bvirt - pd.x; around = pa.x - avirt; adxtail = around + bround; bvirt = (double)(pa.y - ady); avirt = ady + bvirt; bround = bvirt - pd.y; around = pa.y - avirt; adytail = around + bround; bvirt = (double)(pb.x - bdx); avirt = bdx + bvirt; bround = bvirt - pd.x; around = pb.x - avirt; bdxtail = around + bround; bvirt = (double)(pb.y - bdy); avirt = bdy + bvirt; bround = bvirt - pd.y; around = pb.y - avirt; bdytail = around + bround; bvirt = (double)(pc.x - cdx); avirt = cdx + bvirt; bround = bvirt - pd.x; around = pc.x - avirt; cdxtail = around + bround; bvirt = (double)(pc.y - cdy); avirt = cdy + bvirt; bround = bvirt - pd.y; around = pc.y - avirt; cdytail = around + bround; if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) { return det; } errbound = iccerrboundC * permanent + resulterrbound * ((det) >= 0.0 ? (det) : -(det)); det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail)) + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx)) + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail)) + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx)) + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail)) + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx)); if ((det >= errbound) || (-det >= errbound)) { return det; } finnow = fin1; finother = fin2; if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0)) { adxadx1 = (double)(adx * adx); c = (double)(splitter * adx); abig = (double)(c - adx); ahi = c - abig; alo = adx - ahi; err1 = adxadx1 - (ahi * ahi); err3 = err1 - ((ahi + ahi) * alo); adxadx0 = (alo * alo) - err3; adyady1 = (double)(ady * ady); c = (double)(splitter * ady); abig = (double)(c - ady); ahi = c - abig; alo = ady - ahi; err1 = adyady1 - (ahi * ahi); err3 = err1 - ((ahi + ahi) * alo); adyady0 = (alo * alo) - err3; _i = (double)(adxadx0 + adyady0); bvirt = (double)(_i - adxadx0); avirt = _i - bvirt; bround = adyady0 - bvirt; around = adxadx0 - avirt; aa[0] = around + bround; _j = (double)(adxadx1 + _i); bvirt = (double)(_j - adxadx1); avirt = _j - bvirt; bround = _i - bvirt; around = adxadx1 - avirt; _0 = around + bround; _i = (double)(_0 + adyady1); bvirt = (double)(_i - _0); avirt = _i - bvirt; bround = adyady1 - bvirt; around = _0 - avirt; aa[1] = around + bround; aa3 = (double)(_j + _i); bvirt = (double)(aa3 - _j); avirt = aa3 - bvirt; bround = _i - bvirt; around = _j - avirt; aa[2] = around + bround; aa[3] = aa3; } if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0)) { bdxbdx1 = (double)(bdx * bdx); c = (double)(splitter * bdx); abig = (double)(c - bdx); ahi = c - abig; alo = bdx - ahi; err1 = bdxbdx1 - (ahi * ahi); err3 = err1 - ((ahi + ahi) * alo); bdxbdx0 = (alo * alo) - err3; bdybdy1 = (double)(bdy * bdy); c = (double)(splitter * bdy); abig = (double)(c - bdy); ahi = c - abig; alo = bdy - ahi; err1 = bdybdy1 - (ahi * ahi); err3 = err1 - ((ahi + ahi) * alo); bdybdy0 = (alo * alo) - err3; _i = (double)(bdxbdx0 + bdybdy0); bvirt = (double)(_i - bdxbdx0); avirt = _i - bvirt; bround = bdybdy0 - bvirt; around = bdxbdx0 - avirt; bb[0] = around + bround; _j = (double)(bdxbdx1 + _i); bvirt = (double)(_j - bdxbdx1); avirt = _j - bvirt; bround = _i - bvirt; around = bdxbdx1 - avirt; _0 = around + bround; _i = (double)(_0 + bdybdy1); bvirt = (double)(_i - _0); avirt = _i - bvirt; bround = bdybdy1 - bvirt; around = _0 - avirt; bb[1] = around + bround; bb3 = (double)(_j + _i); bvirt = (double)(bb3 - _j); avirt = bb3 - bvirt; bround = _i - bvirt; around = _j - avirt; bb[2] = around + bround; bb[3] = bb3; } if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0)) { cdxcdx1 = (double)(cdx * cdx); c = (double)(splitter * cdx); abig = (double)(c - cdx); ahi = c - abig; alo = cdx - ahi; err1 = cdxcdx1 - (ahi * ahi); err3 = err1 - ((ahi + ahi) * alo); cdxcdx0 = (alo * alo) - err3; cdycdy1 = (double)(cdy * cdy); c = (double)(splitter * cdy); abig = (double)(c - cdy); ahi = c - abig; alo = cdy - ahi; err1 = cdycdy1 - (ahi * ahi); err3 = err1 - ((ahi + ahi) * alo); cdycdy0 = (alo * alo) - err3; _i = (double)(cdxcdx0 + cdycdy0); bvirt = (double)(_i - cdxcdx0); avirt = _i - bvirt; bround = cdycdy0 - bvirt; around = cdxcdx0 - avirt; cc[0] = around + bround; _j = (double)(cdxcdx1 + _i); bvirt = (double)(_j - cdxcdx1); avirt = _j - bvirt; bround = _i - bvirt; around = cdxcdx1 - avirt; _0 = around + bround; _i = (double)(_0 + cdycdy1); bvirt = (double)(_i - _0); avirt = _i - bvirt; bround = cdycdy1 - bvirt; around = _0 - avirt; cc[1] = around + bround; cc3 = (double)(_j + _i); bvirt = (double)(cc3 - _j); avirt = cc3 - bvirt; bround = _i - bvirt; around = _j - avirt; cc[2] = around + bround; cc[3] = cc3; } if (adxtail != 0.0) { axtbclen = ScaleExpansionZeroElim(4, bc, adxtail, axtbc); temp16alen = ScaleExpansionZeroElim(axtbclen, axtbc, 2.0 * adx, temp16a); axtcclen = ScaleExpansionZeroElim(4, cc, adxtail, axtcc); temp16blen = ScaleExpansionZeroElim(axtcclen, axtcc, bdy, temp16b); axtbblen = ScaleExpansionZeroElim(4, bb, adxtail, axtbb); temp16clen = ScaleExpansionZeroElim(axtbblen, axtbb, -cdy, temp16c); temp32alen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = FastExpansionSumZeroElim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if (adytail != 0.0) { aytbclen = ScaleExpansionZeroElim(4, bc, adytail, aytbc); temp16alen = ScaleExpansionZeroElim(aytbclen, aytbc, 2.0 * ady, temp16a); aytbblen = ScaleExpansionZeroElim(4, bb, adytail, aytbb); temp16blen = ScaleExpansionZeroElim(aytbblen, aytbb, cdx, temp16b); aytcclen = ScaleExpansionZeroElim(4, cc, adytail, aytcc); temp16clen = ScaleExpansionZeroElim(aytcclen, aytcc, -bdx, temp16c); temp32alen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = FastExpansionSumZeroElim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if (bdxtail != 0.0) { bxtcalen = ScaleExpansionZeroElim(4, ca, bdxtail, bxtca); temp16alen = ScaleExpansionZeroElim(bxtcalen, bxtca, 2.0 * bdx, temp16a); bxtaalen = ScaleExpansionZeroElim(4, aa, bdxtail, bxtaa); temp16blen = ScaleExpansionZeroElim(bxtaalen, bxtaa, cdy, temp16b); bxtcclen = ScaleExpansionZeroElim(4, cc, bdxtail, bxtcc); temp16clen = ScaleExpansionZeroElim(bxtcclen, bxtcc, -ady, temp16c); temp32alen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = FastExpansionSumZeroElim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if (bdytail != 0.0) { bytcalen = ScaleExpansionZeroElim(4, ca, bdytail, bytca); temp16alen = ScaleExpansionZeroElim(bytcalen, bytca, 2.0 * bdy, temp16a); bytcclen = ScaleExpansionZeroElim(4, cc, bdytail, bytcc); temp16blen = ScaleExpansionZeroElim(bytcclen, bytcc, adx, temp16b); bytaalen = ScaleExpansionZeroElim(4, aa, bdytail, bytaa); temp16clen = ScaleExpansionZeroElim(bytaalen, bytaa, -cdx, temp16c); temp32alen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = FastExpansionSumZeroElim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if (cdxtail != 0.0) { cxtablen = ScaleExpansionZeroElim(4, ab, cdxtail, cxtab); temp16alen = ScaleExpansionZeroElim(cxtablen, cxtab, 2.0 * cdx, temp16a); cxtbblen = ScaleExpansionZeroElim(4, bb, cdxtail, cxtbb); temp16blen = ScaleExpansionZeroElim(cxtbblen, cxtbb, ady, temp16b); cxtaalen = ScaleExpansionZeroElim(4, aa, cdxtail, cxtaa); temp16clen = ScaleExpansionZeroElim(cxtaalen, cxtaa, -bdy, temp16c); temp32alen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = FastExpansionSumZeroElim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if (cdytail != 0.0) { cytablen = ScaleExpansionZeroElim(4, ab, cdytail, cytab); temp16alen = ScaleExpansionZeroElim(cytablen, cytab, 2.0 * cdy, temp16a); cytaalen = ScaleExpansionZeroElim(4, aa, cdytail, cytaa); temp16blen = ScaleExpansionZeroElim(cytaalen, cytaa, bdx, temp16b); cytbblen = ScaleExpansionZeroElim(4, bb, cdytail, cytbb); temp16clen = ScaleExpansionZeroElim(cytbblen, cytbb, -adx, temp16c); temp32alen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = FastExpansionSumZeroElim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if ((adxtail != 0.0) || (adytail != 0.0)) { if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0)) { ti1 = (double)(bdxtail * cdy); c = (double)(splitter * bdxtail); abig = (double)(c - bdxtail); ahi = c - abig; alo = bdxtail - ahi; c = (double)(splitter * cdy); abig = (double)(c - cdy); bhi = c - abig; blo = cdy - bhi; err1 = ti1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); ti0 = (alo * blo) - err3; tj1 = (double)(bdx * cdytail); c = (double)(splitter * bdx); abig = (double)(c - bdx); ahi = c - abig; alo = bdx - ahi; c = (double)(splitter * cdytail); abig = (double)(c - cdytail); bhi = c - abig; blo = cdytail - bhi; err1 = tj1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); tj0 = (alo * blo) - err3; _i = (double)(ti0 + tj0); bvirt = (double)(_i - ti0); avirt = _i - bvirt; bround = tj0 - bvirt; around = ti0 - avirt; u[0] = around + bround; _j = (double)(ti1 + _i); bvirt = (double)(_j - ti1); avirt = _j - bvirt; bround = _i - bvirt; around = ti1 - avirt; _0 = around + bround; _i = (double)(_0 + tj1); bvirt = (double)(_i - _0); avirt = _i - bvirt; bround = tj1 - bvirt; around = _0 - avirt; u[1] = around + bround; u3 = (double)(_j + _i); bvirt = (double)(u3 - _j); avirt = u3 - bvirt; bround = _i - bvirt; around = _j - avirt; u[2] = around + bround; u[3] = u3; negate = -bdy; ti1 = (double)(cdxtail * negate); c = (double)(splitter * cdxtail); abig = (double)(c - cdxtail); ahi = c - abig; alo = cdxtail - ahi; c = (double)(splitter * negate); abig = (double)(c - negate); bhi = c - abig; blo = negate - bhi; err1 = ti1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); ti0 = (alo * blo) - err3; negate = -bdytail; tj1 = (double)(cdx * negate); c = (double)(splitter * cdx); abig = (double)(c - cdx); ahi = c - abig; alo = cdx - ahi; c = (double)(splitter * negate); abig = (double)(c - negate); bhi = c - abig; blo = negate - bhi; err1 = tj1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); tj0 = (alo * blo) - err3; _i = (double)(ti0 + tj0); bvirt = (double)(_i - ti0); avirt = _i - bvirt; bround = tj0 - bvirt; around = ti0 - avirt; v[0] = around + bround; _j = (double)(ti1 + _i); bvirt = (double)(_j - ti1); avirt = _j - bvirt; bround = _i - bvirt; around = ti1 - avirt; _0 = around + bround; _i = (double)(_0 + tj1); bvirt = (double)(_i - _0); avirt = _i - bvirt; bround = tj1 - bvirt; around = _0 - avirt; v[1] = around + bround; v3 = (double)(_j + _i); bvirt = (double)(v3 - _j); avirt = v3 - bvirt; bround = _i - bvirt; around = _j - avirt; v[2] = around + bround; v[3] = v3; bctlen = FastExpansionSumZeroElim(4, u, 4, v, bct); ti1 = (double)(bdxtail * cdytail); c = (double)(splitter * bdxtail); abig = (double)(c - bdxtail); ahi = c - abig; alo = bdxtail - ahi; c = (double)(splitter * cdytail); abig = (double)(c - cdytail); bhi = c - abig; blo = cdytail - bhi; err1 = ti1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); ti0 = (alo * blo) - err3; tj1 = (double)(cdxtail * bdytail); c = (double)(splitter * cdxtail); abig = (double)(c - cdxtail); ahi = c - abig; alo = cdxtail - ahi; c = (double)(splitter * bdytail); abig = (double)(c - bdytail); bhi = c - abig; blo = bdytail - bhi; err1 = tj1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); tj0 = (alo * blo) - err3; _i = (double)(ti0 - tj0); bvirt = (double)(ti0 - _i); avirt = _i + bvirt; bround = bvirt - tj0; around = ti0 - avirt; bctt[0] = around + bround; _j = (double)(ti1 + _i); bvirt = (double)(_j - ti1); avirt = _j - bvirt; bround = _i - bvirt; around = ti1 - avirt; _0 = around + bround; _i = (double)(_0 - tj1); bvirt = (double)(_0 - _i); avirt = _i + bvirt; bround = bvirt - tj1; around = _0 - avirt; bctt[1] = around + bround; bctt3 = (double)(_j + _i); bvirt = (double)(bctt3 - _j); avirt = bctt3 - bvirt; bround = _i - bvirt; around = _j - avirt; bctt[2] = around + bround; bctt[3] = bctt3; bcttlen = 4; } else { bct[0] = 0.0; bctlen = 1; bctt[0] = 0.0; bcttlen = 1; } if (adxtail != 0.0) { temp16alen = ScaleExpansionZeroElim(axtbclen, axtbc, adxtail, temp16a); axtbctlen = ScaleExpansionZeroElim(bctlen, bct, adxtail, axtbct); temp32alen = ScaleExpansionZeroElim(axtbctlen, axtbct, 2.0 * adx, temp32a); temp48len = FastExpansionSumZeroElim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; if (bdytail != 0.0) { temp8len = ScaleExpansionZeroElim(4, cc, adxtail, temp8); temp16alen = ScaleExpansionZeroElim(temp8len, temp8, bdytail, temp16a); finlength = FastExpansionSumZeroElim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } if (cdytail != 0.0) { temp8len = ScaleExpansionZeroElim(4, bb, -adxtail, temp8); temp16alen = ScaleExpansionZeroElim(temp8len, temp8, cdytail, temp16a); finlength = FastExpansionSumZeroElim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } temp32alen = ScaleExpansionZeroElim(axtbctlen, axtbct, adxtail, temp32a); axtbcttlen = ScaleExpansionZeroElim(bcttlen, bctt, adxtail, axtbctt); temp16alen = ScaleExpansionZeroElim(axtbcttlen, axtbctt, 2.0 * adx, temp16a); temp16blen = ScaleExpansionZeroElim(axtbcttlen, axtbctt, adxtail, temp16b); temp32blen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = FastExpansionSumZeroElim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = FastExpansionSumZeroElim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } if (adytail != 0.0) { temp16alen = ScaleExpansionZeroElim(aytbclen, aytbc, adytail, temp16a); aytbctlen = ScaleExpansionZeroElim(bctlen, bct, adytail, aytbct); temp32alen = ScaleExpansionZeroElim(aytbctlen, aytbct, 2.0 * ady, temp32a); temp48len = FastExpansionSumZeroElim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; temp32alen = ScaleExpansionZeroElim(aytbctlen, aytbct, adytail, temp32a); aytbcttlen = ScaleExpansionZeroElim(bcttlen, bctt, adytail, aytbctt); temp16alen = ScaleExpansionZeroElim(aytbcttlen, aytbctt, 2.0 * ady, temp16a); temp16blen = ScaleExpansionZeroElim(aytbcttlen, aytbctt, adytail, temp16b); temp32blen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = FastExpansionSumZeroElim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = FastExpansionSumZeroElim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } } if ((bdxtail != 0.0) || (bdytail != 0.0)) { if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0)) { ti1 = (double)(cdxtail * ady); c = (double)(splitter * cdxtail); abig = (double)(c - cdxtail); ahi = c - abig; alo = cdxtail - ahi; c = (double)(splitter * ady); abig = (double)(c - ady); bhi = c - abig; blo = ady - bhi; err1 = ti1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); ti0 = (alo * blo) - err3; tj1 = (double)(cdx * adytail); c = (double)(splitter * cdx); abig = (double)(c - cdx); ahi = c - abig; alo = cdx - ahi; c = (double)(splitter * adytail); abig = (double)(c - adytail); bhi = c - abig; blo = adytail - bhi; err1 = tj1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); tj0 = (alo * blo) - err3; _i = (double)(ti0 + tj0); bvirt = (double)(_i - ti0); avirt = _i - bvirt; bround = tj0 - bvirt; around = ti0 - avirt; u[0] = around + bround; _j = (double)(ti1 + _i); bvirt = (double)(_j - ti1); avirt = _j - bvirt; bround = _i - bvirt; around = ti1 - avirt; _0 = around + bround; _i = (double)(_0 + tj1); bvirt = (double)(_i - _0); avirt = _i - bvirt; bround = tj1 - bvirt; around = _0 - avirt; u[1] = around + bround; u3 = (double)(_j + _i); bvirt = (double)(u3 - _j); avirt = u3 - bvirt; bround = _i - bvirt; around = _j - avirt; u[2] = around + bround; u[3] = u3; negate = -cdy; ti1 = (double)(adxtail * negate); c = (double)(splitter * adxtail); abig = (double)(c - adxtail); ahi = c - abig; alo = adxtail - ahi; c = (double)(splitter * negate); abig = (double)(c - negate); bhi = c - abig; blo = negate - bhi; err1 = ti1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); ti0 = (alo * blo) - err3; negate = -cdytail; tj1 = (double)(adx * negate); c = (double)(splitter * adx); abig = (double)(c - adx); ahi = c - abig; alo = adx - ahi; c = (double)(splitter * negate); abig = (double)(c - negate); bhi = c - abig; blo = negate - bhi; err1 = tj1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); tj0 = (alo * blo) - err3; _i = (double)(ti0 + tj0); bvirt = (double)(_i - ti0); avirt = _i - bvirt; bround = tj0 - bvirt; around = ti0 - avirt; v[0] = around + bround; _j = (double)(ti1 + _i); bvirt = (double)(_j - ti1); avirt = _j - bvirt; bround = _i - bvirt; around = ti1 - avirt; _0 = around + bround; _i = (double)(_0 + tj1); bvirt = (double)(_i - _0); avirt = _i - bvirt; bround = tj1 - bvirt; around = _0 - avirt; v[1] = around + bround; v3 = (double)(_j + _i); bvirt = (double)(v3 - _j); avirt = v3 - bvirt; bround = _i - bvirt; around = _j - avirt; v[2] = around + bround; v[3] = v3; catlen = FastExpansionSumZeroElim(4, u, 4, v, cat); ti1 = (double)(cdxtail * adytail); c = (double)(splitter * cdxtail); abig = (double)(c - cdxtail); ahi = c - abig; alo = cdxtail - ahi; c = (double)(splitter * adytail); abig = (double)(c - adytail); bhi = c - abig; blo = adytail - bhi; err1 = ti1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); ti0 = (alo * blo) - err3; tj1 = (double)(adxtail * cdytail); c = (double)(splitter * adxtail); abig = (double)(c - adxtail); ahi = c - abig; alo = adxtail - ahi; c = (double)(splitter * cdytail); abig = (double)(c - cdytail); bhi = c - abig; blo = cdytail - bhi; err1 = tj1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); tj0 = (alo * blo) - err3; _i = (double)(ti0 - tj0); bvirt = (double)(ti0 - _i); avirt = _i + bvirt; bround = bvirt - tj0; around = ti0 - avirt; catt[0] = around + bround; _j = (double)(ti1 + _i); bvirt = (double)(_j - ti1); avirt = _j - bvirt; bround = _i - bvirt; around = ti1 - avirt; _0 = around + bround; _i = (double)(_0 - tj1); bvirt = (double)(_0 - _i); avirt = _i + bvirt; bround = bvirt - tj1; around = _0 - avirt; catt[1] = around + bround; catt3 = (double)(_j + _i); bvirt = (double)(catt3 - _j); avirt = catt3 - bvirt; bround = _i - bvirt; around = _j - avirt; catt[2] = around + bround; catt[3] = catt3; cattlen = 4; } else { cat[0] = 0.0; catlen = 1; catt[0] = 0.0; cattlen = 1; } if (bdxtail != 0.0) { temp16alen = ScaleExpansionZeroElim(bxtcalen, bxtca, bdxtail, temp16a); bxtcatlen = ScaleExpansionZeroElim(catlen, cat, bdxtail, bxtcat); temp32alen = ScaleExpansionZeroElim(bxtcatlen, bxtcat, 2.0 * bdx, temp32a); temp48len = FastExpansionSumZeroElim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; if (cdytail != 0.0) { temp8len = ScaleExpansionZeroElim(4, aa, bdxtail, temp8); temp16alen = ScaleExpansionZeroElim(temp8len, temp8, cdytail, temp16a); finlength = FastExpansionSumZeroElim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } if (adytail != 0.0) { temp8len = ScaleExpansionZeroElim(4, cc, -bdxtail, temp8); temp16alen = ScaleExpansionZeroElim(temp8len, temp8, adytail, temp16a); finlength = FastExpansionSumZeroElim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } temp32alen = ScaleExpansionZeroElim(bxtcatlen, bxtcat, bdxtail, temp32a); bxtcattlen = ScaleExpansionZeroElim(cattlen, catt, bdxtail, bxtcatt); temp16alen = ScaleExpansionZeroElim(bxtcattlen, bxtcatt, 2.0 * bdx, temp16a); temp16blen = ScaleExpansionZeroElim(bxtcattlen, bxtcatt, bdxtail, temp16b); temp32blen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = FastExpansionSumZeroElim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = FastExpansionSumZeroElim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } if (bdytail != 0.0) { temp16alen = ScaleExpansionZeroElim(bytcalen, bytca, bdytail, temp16a); bytcatlen = ScaleExpansionZeroElim(catlen, cat, bdytail, bytcat); temp32alen = ScaleExpansionZeroElim(bytcatlen, bytcat, 2.0 * bdy, temp32a); temp48len = FastExpansionSumZeroElim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; temp32alen = ScaleExpansionZeroElim(bytcatlen, bytcat, bdytail, temp32a); bytcattlen = ScaleExpansionZeroElim(cattlen, catt, bdytail, bytcatt); temp16alen = ScaleExpansionZeroElim(bytcattlen, bytcatt, 2.0 * bdy, temp16a); temp16blen = ScaleExpansionZeroElim(bytcattlen, bytcatt, bdytail, temp16b); temp32blen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = FastExpansionSumZeroElim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = FastExpansionSumZeroElim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } } if ((cdxtail != 0.0) || (cdytail != 0.0)) { if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0)) { ti1 = (double)(adxtail * bdy); c = (double)(splitter * adxtail); abig = (double)(c - adxtail); ahi = c - abig; alo = adxtail - ahi; c = (double)(splitter * bdy); abig = (double)(c - bdy); bhi = c - abig; blo = bdy - bhi; err1 = ti1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); ti0 = (alo * blo) - err3; tj1 = (double)(adx * bdytail); c = (double)(splitter * adx); abig = (double)(c - adx); ahi = c - abig; alo = adx - ahi; c = (double)(splitter * bdytail); abig = (double)(c - bdytail); bhi = c - abig; blo = bdytail - bhi; err1 = tj1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); tj0 = (alo * blo) - err3; _i = (double)(ti0 + tj0); bvirt = (double)(_i - ti0); avirt = _i - bvirt; bround = tj0 - bvirt; around = ti0 - avirt; u[0] = around + bround; _j = (double)(ti1 + _i); bvirt = (double)(_j - ti1); avirt = _j - bvirt; bround = _i - bvirt; around = ti1 - avirt; _0 = around + bround; _i = (double)(_0 + tj1); bvirt = (double)(_i - _0); avirt = _i - bvirt; bround = tj1 - bvirt; around = _0 - avirt; u[1] = around + bround; u3 = (double)(_j + _i); bvirt = (double)(u3 - _j); avirt = u3 - bvirt; bround = _i - bvirt; around = _j - avirt; u[2] = around + bround; u[3] = u3; negate = -ady; ti1 = (double)(bdxtail * negate); c = (double)(splitter * bdxtail); abig = (double)(c - bdxtail); ahi = c - abig; alo = bdxtail - ahi; c = (double)(splitter * negate); abig = (double)(c - negate); bhi = c - abig; blo = negate - bhi; err1 = ti1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); ti0 = (alo * blo) - err3; negate = -adytail; tj1 = (double)(bdx * negate); c = (double)(splitter * bdx); abig = (double)(c - bdx); ahi = c - abig; alo = bdx - ahi; c = (double)(splitter * negate); abig = (double)(c - negate); bhi = c - abig; blo = negate - bhi; err1 = tj1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); tj0 = (alo * blo) - err3; _i = (double)(ti0 + tj0); bvirt = (double)(_i - ti0); avirt = _i - bvirt; bround = tj0 - bvirt; around = ti0 - avirt; v[0] = around + bround; _j = (double)(ti1 + _i); bvirt = (double)(_j - ti1); avirt = _j - bvirt; bround = _i - bvirt; around = ti1 - avirt; _0 = around + bround; _i = (double)(_0 + tj1); bvirt = (double)(_i - _0); avirt = _i - bvirt; bround = tj1 - bvirt; around = _0 - avirt; v[1] = around + bround; v3 = (double)(_j + _i); bvirt = (double)(v3 - _j); avirt = v3 - bvirt; bround = _i - bvirt; around = _j - avirt; v[2] = around + bround; v[3] = v3; abtlen = FastExpansionSumZeroElim(4, u, 4, v, abt); ti1 = (double)(adxtail * bdytail); c = (double)(splitter * adxtail); abig = (double)(c - adxtail); ahi = c - abig; alo = adxtail - ahi; c = (double)(splitter * bdytail); abig = (double)(c - bdytail); bhi = c - abig; blo = bdytail - bhi; err1 = ti1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); ti0 = (alo * blo) - err3; tj1 = (double)(bdxtail * adytail); c = (double)(splitter * bdxtail); abig = (double)(c - bdxtail); ahi = c - abig; alo = bdxtail - ahi; c = (double)(splitter * adytail); abig = (double)(c - adytail); bhi = c - abig; blo = adytail - bhi; err1 = tj1 - (ahi * bhi); err2 = err1 - (alo * bhi); err3 = err2 - (ahi * blo); tj0 = (alo * blo) - err3; _i = (double)(ti0 - tj0); bvirt = (double)(ti0 - _i); avirt = _i + bvirt; bround = bvirt - tj0; around = ti0 - avirt; abtt[0] = around + bround; _j = (double)(ti1 + _i); bvirt = (double)(_j - ti1); avirt = _j - bvirt; bround = _i - bvirt; around = ti1 - avirt; _0 = around + bround; _i = (double)(_0 - tj1); bvirt = (double)(_0 - _i); avirt = _i + bvirt; bround = bvirt - tj1; around = _0 - avirt; abtt[1] = around + bround; abtt3 = (double)(_j + _i); bvirt = (double)(abtt3 - _j); avirt = abtt3 - bvirt; bround = _i - bvirt; around = _j - avirt; abtt[2] = around + bround; abtt[3] = abtt3; abttlen = 4; } else { abt[0] = 0.0; abtlen = 1; abtt[0] = 0.0; abttlen = 1; } if (cdxtail != 0.0) { temp16alen = ScaleExpansionZeroElim(cxtablen, cxtab, cdxtail, temp16a); cxtabtlen = ScaleExpansionZeroElim(abtlen, abt, cdxtail, cxtabt); temp32alen = ScaleExpansionZeroElim(cxtabtlen, cxtabt, 2.0 * cdx, temp32a); temp48len = FastExpansionSumZeroElim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; if (adytail != 0.0) { temp8len = ScaleExpansionZeroElim(4, bb, cdxtail, temp8); temp16alen = ScaleExpansionZeroElim(temp8len, temp8, adytail, temp16a); finlength = FastExpansionSumZeroElim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } if (bdytail != 0.0) { temp8len = ScaleExpansionZeroElim(4, aa, -cdxtail, temp8); temp16alen = ScaleExpansionZeroElim(temp8len, temp8, bdytail, temp16a); finlength = FastExpansionSumZeroElim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } temp32alen = ScaleExpansionZeroElim(cxtabtlen, cxtabt, cdxtail, temp32a); cxtabttlen = ScaleExpansionZeroElim(abttlen, abtt, cdxtail, cxtabtt); temp16alen = ScaleExpansionZeroElim(cxtabttlen, cxtabtt, 2.0 * cdx, temp16a); temp16blen = ScaleExpansionZeroElim(cxtabttlen, cxtabtt, cdxtail, temp16b); temp32blen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = FastExpansionSumZeroElim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = FastExpansionSumZeroElim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } if (cdytail != 0.0) { temp16alen = ScaleExpansionZeroElim(cytablen, cytab, cdytail, temp16a); cytabtlen = ScaleExpansionZeroElim(abtlen, abt, cdytail, cytabt); temp32alen = ScaleExpansionZeroElim(cytabtlen, cytabt, 2.0 * cdy, temp32a); temp48len = FastExpansionSumZeroElim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = FastExpansionSumZeroElim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; temp32alen = ScaleExpansionZeroElim(cytabtlen, cytabt, cdytail, temp32a); cytabttlen = ScaleExpansionZeroElim(abttlen, abtt, cdytail, cytabtt); temp16alen = ScaleExpansionZeroElim(cytabttlen, cytabtt, 2.0 * cdy, temp16a); temp16blen = ScaleExpansionZeroElim(cytabttlen, cytabtt, cdytail, temp16b); temp32blen = FastExpansionSumZeroElim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = FastExpansionSumZeroElim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = FastExpansionSumZeroElim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } } return finnow[finlength - 1]; } #region Workspace // InCircleAdapt workspace: double[] fin1, fin2, abdet; double[] axbc, axxbc, aybc, ayybc, adet; double[] bxca, bxxca, byca, byyca, bdet; double[] cxab, cxxab, cyab, cyyab, cdet; double[] temp8, temp16a, temp16b, temp16c; double[] temp32a, temp32b, temp48, temp64; private void AllocateWorkspace() { fin1 = new double[1152]; fin2 = new double[1152]; abdet = new double[64]; axbc = new double[8]; axxbc = new double[16]; aybc = new double[8]; ayybc = new double[16]; adet = new double[32]; bxca = new double[8]; bxxca = new double[16]; byca = new double[8]; byyca = new double[16]; bdet = new double[32]; cxab = new double[8]; cxxab = new double[16]; cyab = new double[8]; cyyab = new double[16]; cdet = new double[32]; temp8 = new double[8]; temp16a = new double[16]; temp16b = new double[16]; temp16c = new double[16]; temp32a = new double[32]; temp32b = new double[32]; temp48 = new double[48]; temp64 = new double[64]; } private void ClearWorkspace() { } #endregion #endregion } }