// -----------------------------------------------------------------------
//
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
//
// -----------------------------------------------------------------------
namespace TriangleNet.Meshing.Algorithm
{
using System;
using System.Collections.Generic;
using TriangleNet.Topology;
using TriangleNet.Geometry;
using TriangleNet.Tools;
///
/// Builds a delaunay triangulation using the sweepline algorithm.
///
public class SweepLine : ITriangulator
{
static int randomseed = 1;
static int SAMPLERATE = 10;
static int randomnation(int choices)
{
randomseed = (randomseed * 1366 + 150889) % 714025;
return randomseed / (714025 / choices + 1);
}
IPredicates predicates;
Mesh mesh;
double xminextreme; // Nonexistent x value used as a flag in sweepline.
List splaynodes;
public IMesh Triangulate(IList points, Configuration config)
{
this.predicates = config.Predicates();
this.mesh = new Mesh(config);
this.mesh.TransferNodes(points);
// Nonexistent x value used as a flag to mark circle events in sweepline
// Delaunay algorithm.
xminextreme = 10 * mesh.bounds.Left - 9 * mesh.bounds.Right;
SweepEvent[] eventheap;
SweepEvent nextevent;
SweepEvent newevent;
SplayNode splayroot;
Otri bottommost = default(Otri);
Otri searchtri = default(Otri);
Otri fliptri;
Otri lefttri = default(Otri);
Otri righttri = default(Otri);
Otri farlefttri = default(Otri);
Otri farrighttri = default(Otri);
Otri inserttri = default(Otri);
Vertex firstvertex, secondvertex;
Vertex nextvertex, lastvertex;
Vertex connectvertex;
Vertex leftvertex, midvertex, rightvertex;
double lefttest, righttest;
int heapsize;
bool check4events, farrightflag = false;
splaynodes = new List();
splayroot = null;
heapsize = points.Count;
CreateHeap(out eventheap, heapsize);//, out events, out freeevents);
mesh.MakeTriangle(ref lefttri);
mesh.MakeTriangle(ref righttri);
lefttri.Bond(ref righttri);
lefttri.Lnext();
righttri.Lprev();
lefttri.Bond(ref righttri);
lefttri.Lnext();
righttri.Lprev();
lefttri.Bond(ref righttri);
firstvertex = eventheap[0].vertexEvent;
HeapDelete(eventheap, heapsize, 0);
heapsize--;
do
{
if (heapsize == 0)
{
Log.Instance.Error("Input vertices are all identical.", "SweepLine.Triangulate()");
throw new Exception("Input vertices are all identical.");
}
secondvertex = eventheap[0].vertexEvent;
HeapDelete(eventheap, heapsize, 0);
heapsize--;
if ((firstvertex.x == secondvertex.x) &&
(firstvertex.y == secondvertex.y))
{
if (Log.Verbose)
{
Log.Instance.Warning("A duplicate vertex appeared and was ignored (ID " + secondvertex.id + ").",
"SweepLine.Triangulate().1");
}
secondvertex.type = VertexType.UndeadVertex;
mesh.undeads++;
}
} while ((firstvertex.x == secondvertex.x) &&
(firstvertex.y == secondvertex.y));
lefttri.SetOrg(firstvertex);
lefttri.SetDest(secondvertex);
righttri.SetOrg(secondvertex);
righttri.SetDest(firstvertex);
lefttri.Lprev(ref bottommost);
lastvertex = secondvertex;
while (heapsize > 0)
{
nextevent = eventheap[0];
HeapDelete(eventheap, heapsize, 0);
heapsize--;
check4events = true;
if (nextevent.xkey < mesh.bounds.Left)
{
fliptri = nextevent.otriEvent;
fliptri.Oprev(ref farlefttri);
Check4DeadEvent(ref farlefttri, eventheap, ref heapsize);
fliptri.Onext(ref farrighttri);
Check4DeadEvent(ref farrighttri, eventheap, ref heapsize);
if (farlefttri.Equals(bottommost))
{
fliptri.Lprev(ref bottommost);
}
mesh.Flip(ref fliptri);
fliptri.SetApex(null);
fliptri.Lprev(ref lefttri);
fliptri.Lnext(ref righttri);
lefttri.Sym(ref farlefttri);
if (randomnation(SAMPLERATE) == 0)
{
fliptri.Sym();
leftvertex = fliptri.Dest();
midvertex = fliptri.Apex();
rightvertex = fliptri.Org();
splayroot = CircleTopInsert(splayroot, lefttri, leftvertex, midvertex, rightvertex, nextevent.ykey);
}
}
else
{
nextvertex = nextevent.vertexEvent;
if ((nextvertex.x == lastvertex.x) &&
(nextvertex.y == lastvertex.y))
{
if (Log.Verbose)
{
Log.Instance.Warning("A duplicate vertex appeared and was ignored (ID " + nextvertex.id + ").",
"SweepLine.Triangulate().2");
}
nextvertex.type = VertexType.UndeadVertex;
mesh.undeads++;
check4events = false;
}
else
{
lastvertex = nextvertex;
splayroot = FrontLocate(splayroot, bottommost, nextvertex, ref searchtri, ref farrightflag);
//bottommost.Copy(ref searchtri);
//farrightflag = false;
//while (!farrightflag && RightOfHyperbola(ref searchtri, nextvertex))
//{
// searchtri.OnextSelf();
// farrightflag = searchtri.Equal(bottommost);
//}
Check4DeadEvent(ref searchtri, eventheap, ref heapsize);
searchtri.Copy(ref farrighttri);
searchtri.Sym(ref farlefttri);
mesh.MakeTriangle(ref lefttri);
mesh.MakeTriangle(ref righttri);
connectvertex = farrighttri.Dest();
lefttri.SetOrg(connectvertex);
lefttri.SetDest(nextvertex);
righttri.SetOrg(nextvertex);
righttri.SetDest(connectvertex);
lefttri.Bond(ref righttri);
lefttri.Lnext();
righttri.Lprev();
lefttri.Bond(ref righttri);
lefttri.Lnext();
righttri.Lprev();
lefttri.Bond(ref farlefttri);
righttri.Bond(ref farrighttri);
if (!farrightflag && farrighttri.Equals(bottommost))
{
lefttri.Copy(ref bottommost);
}
if (randomnation(SAMPLERATE) == 0)
{
splayroot = SplayInsert(splayroot, lefttri, nextvertex);
}
else if (randomnation(SAMPLERATE) == 0)
{
righttri.Lnext(ref inserttri);
splayroot = SplayInsert(splayroot, inserttri, nextvertex);
}
}
}
if (check4events)
{
leftvertex = farlefttri.Apex();
midvertex = lefttri.Dest();
rightvertex = lefttri.Apex();
lefttest = predicates.CounterClockwise(leftvertex, midvertex, rightvertex);
if (lefttest > 0.0)
{
newevent = new SweepEvent();
newevent.xkey = xminextreme;
newevent.ykey = CircleTop(leftvertex, midvertex, rightvertex, lefttest);
newevent.otriEvent = lefttri;
HeapInsert(eventheap, heapsize, newevent);
heapsize++;
lefttri.SetOrg(new SweepEventVertex(newevent));
}
leftvertex = righttri.Apex();
midvertex = righttri.Org();
rightvertex = farrighttri.Apex();
righttest = predicates.CounterClockwise(leftvertex, midvertex, rightvertex);
if (righttest > 0.0)
{
newevent = new SweepEvent();
newevent.xkey = xminextreme;
newevent.ykey = CircleTop(leftvertex, midvertex, rightvertex, righttest);
newevent.otriEvent = farrighttri;
HeapInsert(eventheap, heapsize, newevent);
heapsize++;
farrighttri.SetOrg(new SweepEventVertex(newevent));
}
}
}
splaynodes.Clear();
bottommost.Lprev();
this.mesh.hullsize = RemoveGhosts(ref bottommost);
return this.mesh;
}
#region Heap
void HeapInsert(SweepEvent[] heap, int heapsize, SweepEvent newevent)
{
double eventx, eventy;
int eventnum;
int parent;
bool notdone;
eventx = newevent.xkey;
eventy = newevent.ykey;
eventnum = heapsize;
notdone = eventnum > 0;
while (notdone)
{
parent = (eventnum - 1) >> 1;
if ((heap[parent].ykey < eventy) ||
((heap[parent].ykey == eventy)
&& (heap[parent].xkey <= eventx)))
{
notdone = false;
}
else
{
heap[eventnum] = heap[parent];
heap[eventnum].heapposition = eventnum;
eventnum = parent;
notdone = eventnum > 0;
}
}
heap[eventnum] = newevent;
newevent.heapposition = eventnum;
}
void Heapify(SweepEvent[] heap, int heapsize, int eventnum)
{
SweepEvent thisevent;
double eventx, eventy;
int leftchild, rightchild;
int smallest;
bool notdone;
thisevent = heap[eventnum];
eventx = thisevent.xkey;
eventy = thisevent.ykey;
leftchild = 2 * eventnum + 1;
notdone = leftchild < heapsize;
while (notdone)
{
if ((heap[leftchild].ykey < eventy) ||
((heap[leftchild].ykey == eventy)
&& (heap[leftchild].xkey < eventx)))
{
smallest = leftchild;
}
else
{
smallest = eventnum;
}
rightchild = leftchild + 1;
if (rightchild < heapsize)
{
if ((heap[rightchild].ykey < heap[smallest].ykey) ||
((heap[rightchild].ykey == heap[smallest].ykey)
&& (heap[rightchild].xkey < heap[smallest].xkey)))
{
smallest = rightchild;
}
}
if (smallest == eventnum)
{
notdone = false;
}
else
{
heap[eventnum] = heap[smallest];
heap[eventnum].heapposition = eventnum;
heap[smallest] = thisevent;
thisevent.heapposition = smallest;
eventnum = smallest;
leftchild = 2 * eventnum + 1;
notdone = leftchild < heapsize;
}
}
}
void HeapDelete(SweepEvent[] heap, int heapsize, int eventnum)
{
SweepEvent moveevent;
double eventx, eventy;
int parent;
bool notdone;
moveevent = heap[heapsize - 1];
if (eventnum > 0)
{
eventx = moveevent.xkey;
eventy = moveevent.ykey;
do
{
parent = (eventnum - 1) >> 1;
if ((heap[parent].ykey < eventy) ||
((heap[parent].ykey == eventy)
&& (heap[parent].xkey <= eventx)))
{
notdone = false;
}
else
{
heap[eventnum] = heap[parent];
heap[eventnum].heapposition = eventnum;
eventnum = parent;
notdone = eventnum > 0;
}
} while (notdone);
}
heap[eventnum] = moveevent;
moveevent.heapposition = eventnum;
Heapify(heap, heapsize - 1, eventnum);
}
void CreateHeap(out SweepEvent[] eventheap, int size)
{
Vertex thisvertex;
int maxevents;
int i;
SweepEvent evt;
maxevents = (3 * size) / 2;
eventheap = new SweepEvent[maxevents];
i = 0;
foreach (var v in mesh.vertices.Values)
{
thisvertex = v;
evt = new SweepEvent();
evt.vertexEvent = thisvertex;
evt.xkey = thisvertex.x;
evt.ykey = thisvertex.y;
HeapInsert(eventheap, i++, evt);
}
}
#endregion
#region Splaytree
SplayNode Splay(SplayNode splaytree, Point searchpoint, ref Otri searchtri)
{
SplayNode child, grandchild;
SplayNode lefttree, righttree;
SplayNode leftright;
Vertex checkvertex;
bool rightofroot, rightofchild;
if (splaytree == null)
{
return null;
}
checkvertex = splaytree.keyedge.Dest();
if (checkvertex == splaytree.keydest)
{
rightofroot = RightOfHyperbola(ref splaytree.keyedge, searchpoint);
if (rightofroot)
{
splaytree.keyedge.Copy(ref searchtri);
child = splaytree.rchild;
}
else
{
child = splaytree.lchild;
}
if (child == null)
{
return splaytree;
}
checkvertex = child.keyedge.Dest();
if (checkvertex != child.keydest)
{
child = Splay(child, searchpoint, ref searchtri);
if (child == null)
{
if (rightofroot)
{
splaytree.rchild = null;
}
else
{
splaytree.lchild = null;
}
return splaytree;
}
}
rightofchild = RightOfHyperbola(ref child.keyedge, searchpoint);
if (rightofchild)
{
child.keyedge.Copy(ref searchtri);
grandchild = Splay(child.rchild, searchpoint, ref searchtri);
child.rchild = grandchild;
}
else
{
grandchild = Splay(child.lchild, searchpoint, ref searchtri);
child.lchild = grandchild;
}
if (grandchild == null)
{
if (rightofroot)
{
splaytree.rchild = child.lchild;
child.lchild = splaytree;
}
else
{
splaytree.lchild = child.rchild;
child.rchild = splaytree;
}
return child;
}
if (rightofchild)
{
if (rightofroot)
{
splaytree.rchild = child.lchild;
child.lchild = splaytree;
}
else
{
splaytree.lchild = grandchild.rchild;
grandchild.rchild = splaytree;
}
child.rchild = grandchild.lchild;
grandchild.lchild = child;
}
else
{
if (rightofroot)
{
splaytree.rchild = grandchild.lchild;
grandchild.lchild = splaytree;
}
else
{
splaytree.lchild = child.rchild;
child.rchild = splaytree;
}
child.lchild = grandchild.rchild;
grandchild.rchild = child;
}
return grandchild;
}
else
{
lefttree = Splay(splaytree.lchild, searchpoint, ref searchtri);
righttree = Splay(splaytree.rchild, searchpoint, ref searchtri);
splaynodes.Remove(splaytree);
if (lefttree == null)
{
return righttree;
}
else if (righttree == null)
{
return lefttree;
}
else if (lefttree.rchild == null)
{
lefttree.rchild = righttree.lchild;
righttree.lchild = lefttree;
return righttree;
}
else if (righttree.lchild == null)
{
righttree.lchild = lefttree.rchild;
lefttree.rchild = righttree;
return lefttree;
}
else
{
// printf("Holy Toledo!!!\n");
leftright = lefttree.rchild;
while (leftright.rchild != null)
{
leftright = leftright.rchild;
}
leftright.rchild = righttree;
return lefttree;
}
}
}
SplayNode SplayInsert(SplayNode splayroot, Otri newkey, Point searchpoint)
{
SplayNode newsplaynode;
newsplaynode = new SplayNode(); //poolalloc(m.splaynodes);
splaynodes.Add(newsplaynode);
newkey.Copy(ref newsplaynode.keyedge);
newsplaynode.keydest = newkey.Dest();
if (splayroot == null)
{
newsplaynode.lchild = null;
newsplaynode.rchild = null;
}
else if (RightOfHyperbola(ref splayroot.keyedge, searchpoint))
{
newsplaynode.lchild = splayroot;
newsplaynode.rchild = splayroot.rchild;
splayroot.rchild = null;
}
else
{
newsplaynode.lchild = splayroot.lchild;
newsplaynode.rchild = splayroot;
splayroot.lchild = null;
}
return newsplaynode;
}
SplayNode FrontLocate(SplayNode splayroot, Otri bottommost, Vertex searchvertex,
ref Otri searchtri, ref bool farright)
{
bool farrightflag;
bottommost.Copy(ref searchtri);
splayroot = Splay(splayroot, searchvertex, ref searchtri);
farrightflag = false;
while (!farrightflag && RightOfHyperbola(ref searchtri, searchvertex))
{
searchtri.Onext();
farrightflag = searchtri.Equals(bottommost);
}
farright = farrightflag;
return splayroot;
}
SplayNode CircleTopInsert(SplayNode splayroot, Otri newkey,
Vertex pa, Vertex pb, Vertex pc, double topy)
{
double ccwabc;
double xac, yac, xbc, ybc;
double aclen2, bclen2;
Point searchpoint = new Point(); // TODO: mesh.nextras
Otri dummytri = default(Otri);
ccwabc = predicates.CounterClockwise(pa, pb, pc);
xac = pa.x - pc.x;
yac = pa.y - pc.y;
xbc = pb.x - pc.x;
ybc = pb.y - pc.y;
aclen2 = xac * xac + yac * yac;
bclen2 = xbc * xbc + ybc * ybc;
searchpoint.x = pc.x - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc);
searchpoint.y = topy;
return SplayInsert(Splay(splayroot, searchpoint, ref dummytri), newkey, searchpoint);
}
#endregion
bool RightOfHyperbola(ref Otri fronttri, Point newsite)
{
Vertex leftvertex, rightvertex;
double dxa, dya, dxb, dyb;
Statistic.HyperbolaCount++;
leftvertex = fronttri.Dest();
rightvertex = fronttri.Apex();
if ((leftvertex.y < rightvertex.y) ||
((leftvertex.y == rightvertex.y) &&
(leftvertex.x < rightvertex.x)))
{
if (newsite.x >= rightvertex.x)
{
return true;
}
}
else
{
if (newsite.x <= leftvertex.x)
{
return false;
}
}
dxa = leftvertex.x - newsite.x;
dya = leftvertex.y - newsite.y;
dxb = rightvertex.x - newsite.x;
dyb = rightvertex.y - newsite.y;
return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya);
}
double CircleTop(Vertex pa, Vertex pb, Vertex pc, double ccwabc)
{
double xac, yac, xbc, ybc, xab, yab;
double aclen2, bclen2, ablen2;
Statistic.CircleTopCount++;
xac = pa.x - pc.x;
yac = pa.y - pc.y;
xbc = pb.x - pc.x;
ybc = pb.y - pc.y;
xab = pa.x - pb.x;
yab = pa.y - pb.y;
aclen2 = xac * xac + yac * yac;
bclen2 = xbc * xbc + ybc * ybc;
ablen2 = xab * xab + yab * yab;
return pc.y + (xac * bclen2 - xbc * aclen2 + Math.Sqrt(aclen2 * bclen2 * ablen2)) / (2.0 * ccwabc);
}
void Check4DeadEvent(ref Otri checktri, SweepEvent[] eventheap, ref int heapsize)
{
SweepEvent deadevent;
SweepEventVertex eventvertex;
int eventnum = -1;
eventvertex = checktri.Org() as SweepEventVertex;
if (eventvertex != null)
{
deadevent = eventvertex.evt;
eventnum = deadevent.heapposition;
HeapDelete(eventheap, heapsize, eventnum);
heapsize--;
checktri.SetOrg(null);
}
}
///
/// Removes ghost triangles.
///
///
/// Number of vertices on the hull.
int RemoveGhosts(ref Otri startghost)
{
Otri searchedge = default(Otri);
Otri dissolveedge = default(Otri);
Otri deadtriangle = default(Otri);
Vertex markorg;
int hullsize;
bool noPoly = !mesh.behavior.Poly;
var dummytri = mesh.dummytri;
// Find an edge on the convex hull to start point location from.
startghost.Lprev(ref searchedge);
searchedge.Sym();
dummytri.neighbors[0] = searchedge;
// Remove the bounding box and count the convex hull edges.
startghost.Copy(ref dissolveedge);
hullsize = 0;
do
{
hullsize++;
dissolveedge.Lnext(ref deadtriangle);
dissolveedge.Lprev();
dissolveedge.Sym();
// If no PSLG is involved, set the boundary markers of all the vertices
// on the convex hull. If a PSLG is used, this step is done later.
if (noPoly)
{
// Watch out for the case where all the input vertices are collinear.
if (dissolveedge.tri.id != Mesh.DUMMY)
{
markorg = dissolveedge.Org();
if (markorg.label == 0)
{
markorg.label = 1;
}
}
}
// Remove a bounding triangle from a convex hull triangle.
dissolveedge.Dissolve(dummytri);
// Find the next bounding triangle.
deadtriangle.Sym(ref dissolveedge);
// Delete the bounding triangle.
mesh.TriangleDealloc(deadtriangle.tri);
} while (!dissolveedge.Equals(startghost));
return hullsize;
}
#region Internal classes
///
/// A node in a heap used to store events for the sweepline Delaunay algorithm.
///
///
/// Only used in the sweepline algorithm.
///
/// Nodes do not point directly to their parents or children in the heap. Instead, each
/// node knows its position in the heap, and can look up its parent and children in a
/// separate array. To distinguish site events from circle events, all circle events are
/// given an invalid (smaller than 'xmin') x-coordinate 'xkey'.
///
class SweepEvent
{
public double xkey, ykey; // Coordinates of the event.
public Vertex vertexEvent; // Vertex event.
public Otri otriEvent; // Circle event.
public int heapposition; // Marks this event's position in the heap.
}
///
/// Introducing a new class which aggregates a sweep event is the easiest way
/// to handle the pointer magic of the original code (casting a sweep event
/// to vertex etc.).
///
class SweepEventVertex : Vertex
{
public SweepEvent evt;
public SweepEventVertex(SweepEvent e)
{
evt = e;
}
}
///
/// A node in the splay tree.
///
///
/// Only used in the sweepline algorithm.
///
/// Each node holds an oriented ghost triangle that represents a boundary edge
/// of the growing triangulation. When a circle event covers two boundary edges
/// with a triangle, so that they are no longer boundary edges, those edges are
/// not immediately deleted from the tree; rather, they are lazily deleted when
/// they are next encountered. (Since only a random sample of boundary edges are
/// kept in the tree, lazy deletion is faster.) 'keydest' is used to verify that
/// a triangle is still the same as when it entered the splay tree; if it has
/// been rotated (due to a circle event), it no longer represents a boundary
/// edge and should be deleted.
///
class SplayNode
{
public Otri keyedge; // Lprev of an edge on the front.
public Vertex keydest; // Used to verify that splay node is still live.
public SplayNode lchild, rchild; // Children in splay tree.
}
#endregion
}
}