namespace TriangleNet.Geometry
{
using System;
using TriangleNet.Meshing;
public static class ExtensionMethods
{
#region IPolygon extensions
///
/// Triangulates a polygon.
///
public static IMesh Triangulate(this IPolygon polygon)
{
return (new GenericMesher()).Triangulate(polygon, null, null);
}
///
/// Triangulates a polygon, applying constraint options.
///
/// Constraint options.
public static IMesh Triangulate(this IPolygon polygon, ConstraintOptions options)
{
return (new GenericMesher()).Triangulate(polygon, options, null);
}
///
/// Triangulates a polygon, applying quality options.
///
/// Quality options.
public static IMesh Triangulate(this IPolygon polygon, QualityOptions quality)
{
return (new GenericMesher()).Triangulate(polygon, null, quality);
}
///
/// Triangulates a polygon, applying quality and constraint options.
///
/// Constraint options.
/// Quality options.
public static IMesh Triangulate(this IPolygon polygon, ConstraintOptions options, QualityOptions quality)
{
return (new GenericMesher()).Triangulate(polygon, options, quality);
}
///
/// Triangulates a polygon, applying quality and constraint options.
///
/// Constraint options.
/// Quality options.
/// The triangulation algorithm.
public static IMesh Triangulate(this IPolygon polygon, ConstraintOptions options, QualityOptions quality,
ITriangulator triangulator)
{
return (new GenericMesher(triangulator)).Triangulate(polygon, options, quality);
}
#endregion
#region Rectangle extensions
#endregion
#region ITriangle extensions
///
/// Test whether a given point lies inside a triangle or not.
///
/// Point to locate.
/// True, if point is inside or on the edge of this triangle.
public static bool Contains(this ITriangle triangle, Point p)
{
return Contains(triangle, p.X, p.Y);
}
///
/// Test whether a given point lies inside a triangle or not.
///
/// Point to locate.
/// Point to locate.
/// True, if point is inside or on the edge of this triangle.
public static bool Contains(this ITriangle triangle, double x, double y)
{
var t0 = triangle.GetVertex(0);
var t1 = triangle.GetVertex(1);
var t2 = triangle.GetVertex(2);
// TODO: no need to create new Point instances here
Point d0 = new Point(t1.X - t0.X, t1.Y - t0.Y);
Point d1 = new Point(t2.X - t0.X, t2.Y - t0.Y);
Point d2 = new Point(x - t0.X, y - t0.Y);
// crossproduct of (0, 0, 1) and d0
Point c0 = new Point(-d0.Y, d0.X);
// crossproduct of (0, 0, 1) and d1
Point c1 = new Point(-d1.Y, d1.X);
// Linear combination d2 = s * d0 + v * d1.
//
// Multiply both sides of the equation with c0 and c1
// and solve for s and v respectively
//
// s = d2 * c1 / d0 * c1
// v = d2 * c0 / d1 * c0
double s = DotProduct(d2, c1) / DotProduct(d0, c1);
double v = DotProduct(d2, c0) / DotProduct(d1, c0);
if (s >= 0 && v >= 0 && ((s + v) <= 1))
{
// Point is inside or on the edge of this triangle.
return true;
}
return false;
}
public static Rectangle Bounds(this ITriangle triangle)
{
var bounds = new Rectangle();
for (int i = 0; i < 3; i++)
{
bounds.Expand(triangle.GetVertex(i));
}
return bounds;
}
#endregion
#region Helper methods
internal static double DotProduct(Point p, Point q)
{
return p.X * q.X + p.Y * q.Y;
}
#endregion
}
}