// ----------------------------------------------------------------------- // // Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/ // // ----------------------------------------------------------------------- namespace TriangleNet.Geometry { using System; using System.Linq; using System.Collections.Generic; public class Contour { int marker; bool convex; /// /// Gets or sets the list of points making up the contour. /// public List Points { get; set; } /// /// Initializes a new instance of the class. /// /// The points that make up the contour. public Contour(IEnumerable points) : this(points, 0, false) { } /// /// Initializes a new instance of the class. /// /// The points that make up the contour. /// Contour marker. public Contour(IEnumerable points, int marker) : this(points, marker, false) { } /// /// Initializes a new instance of the class. /// /// The points that make up the contour. /// Contour marker. /// The hole is convex. public Contour(IEnumerable points, int marker, bool convex) { AddPoints(points); this.marker = marker; this.convex = convex; } public List GetSegments() { var segments = new List(); var p = this.Points; int count = p.Count - 1; for (int i = 0; i < count; i++) { // Add segments to polygon. segments.Add(new Segment(p[i], p[i + 1], marker)); } // Close the contour. segments.Add(new Segment(p[count], p[0], marker)); return segments; } /// /// Try to find a point inside the contour. /// /// The number of iterations on each segment (default = 5). /// Threshold for co-linear points (default = 2e-5). /// Point inside the contour /// Throws if no point could be found. /// /// For each corner (index i) of the contour, the 3 points with indices i-1, i and i+1 /// are considered and a search on the line through the corner vertex is started (either /// on the bisecting line, or, if is less than /// eps, on the perpendicular line. /// A given number of points will be tested (limit), while the distance to the contour /// boundary will be reduced in each iteration (with a factor 1 / 2^i, i = 1 ... limit). /// public Point FindInteriorPoint(int limit = 5, double eps = 2e-5) { if (convex) { int count = this.Points.Count; var point = new Point(0.0, 0.0); for (int i = 0; i < count; i++) { point.x += this.Points[i].x; point.y += this.Points[i].y; } // If the contour is convex, use its centroid. point.x /= count; point.y /= count; return point; } return FindPointInPolygon(this.Points, limit, eps); } private void AddPoints(IEnumerable points) { this.Points = new List(points); int count = Points.Count - 1; // Check if first vertex equals last vertex. if (Points[0] == Points[count]) { Points.RemoveAt(count); } } #region Helper methods private static Point FindPointInPolygon(List contour, int limit, double eps) { if ( contour.Count <= 3 ) { var x = 0.0; var y = 0.0; for ( int i = 0; i < contour.Count; i++ ) { x += contour[ i ].X; y += contour[ i ].Y; } var w = contour.Count == 0 ? 0 : ( 1.0 / contour.Count ); return new Point( x * w, y * w); } var bounds = new Rectangle(); bounds.Expand(contour.Cast()); int length = contour.Count; var test = new Point(); Point a, b, c; // Current corner points. double bx, by; double dx, dy; double h; var predicates = new RobustPredicates(); a = contour[0]; b = contour[1]; for (int i = 0; i < length; i++) { c = contour[(i + 2) % length]; // Corner point. bx = b.x; by = b.y; // NOTE: if we knew the contour points were in counterclockwise order, we // could skip concave corners and search only in one direction. h = predicates.CounterClockwise(a, b, c); if (Math.Abs(h) < eps) { // Points are nearly co-linear. Use perpendicular direction. dx = (c.y - a.y) / 2; dy = (a.x - c.x) / 2; } else { // Direction [midpoint(a-c) -> corner point] dx = (a.x + c.x) / 2 - bx; dy = (a.y + c.y) / 2 - by; } // Move around the contour. a = b; b = c; h = 1.0; for (int j = 0; j < limit; j++) { // Search in direction. test.x = bx + dx * h; test.y = by + dy * h; if (bounds.Contains(test) && IsPointInPolygon(test, contour)) { return test; } // Search in opposite direction (see NOTE above). test.x = bx - dx * h; test.y = by - dy * h; if (bounds.Contains(test) && IsPointInPolygon(test, contour)) { return test; } h = h / 2; } } var exceptionInfo = "Found no point inside polygon:"; var sp = "G"; var ci = System.Globalization.CultureInfo.InvariantCulture; for ( int i = 0; i < Math.Min( 20, length ); i++ ) { exceptionInfo += " "; exceptionInfo += "(" + contour[ i ].X.ToString( sp, ci ) + ", " + contour[ i ].Y.ToString( sp, ci ) + ")"; } throw new Exception( exceptionInfo ); } /// /// Return true if the given point is inside the polygon, or false if it is not. /// /// The point to check. /// The polygon (list of contour points). /// /// /// WARNING: If the point is exactly on the edge of the polygon, then the function /// may return true or false. /// /// See http://alienryderflex.com/polygon/ /// private static bool IsPointInPolygon(Point point, List poly) { bool inside = false; double x = point.x; double y = point.y; int count = poly.Count; for (int i = 0, j = count - 1; i < count; i++) { if (((poly[i].y < y && poly[j].y >= y) || (poly[j].y < y && poly[i].y >= y)) && (poly[i].x <= x || poly[j].x <= x)) { inside ^= (poly[i].x + (y - poly[i].y) / (poly[j].y - poly[i].y) * (poly[j].x - poly[i].x) < x); } j = i; } return inside; } #endregion } }