279 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
		
		
			
		
	
	
			279 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
|   | shader_type spatial; | ||
|  | render_mode blend_mix, depth_prepass_alpha, cull_back, unshaded; | ||
|  | uniform vec4 albedo : source_color = vec4(1, 1, 1, 1); | ||
|  | uniform float specular = 0.5f; | ||
|  | uniform float metallic = 0.0f; | ||
|  | uniform float roughness : hint_range(0, 1) = 1.0f; | ||
|  | 
 | ||
|  | uniform sampler2D imposterTextureAlbedo : source_color; | ||
|  | uniform vec2 imposterFrames = vec2(16.0f, 16.0f); | ||
|  | uniform vec3 positionOffset = vec3(0.0f); | ||
|  | uniform bool isFullSphere = true; | ||
|  | uniform float alpha_clamp = 0.5f; | ||
|  | uniform float scale = 1.0f; | ||
|  | uniform float depth_scale : hint_range(0, 1) = 0.0f; | ||
|  | uniform float aabb_max = 1.0; | ||
|  | 
 | ||
|  | varying vec2 uv_frame1; | ||
|  | varying vec2 xy_frame1; | ||
|  | varying flat vec2 frame1; | ||
|  | 
 | ||
|  | varying vec4 quad_blend_weights; | ||
|  | 
 | ||
|  | vec2 VecToSphereOct(vec3 pivotToCamera) | ||
|  | { | ||
|  | 	vec3 octant = sign(pivotToCamera); | ||
|  | 
 | ||
|  | 	//  |x| + |y| + |z| = 1 | ||
|  | 	float sum = dot(pivotToCamera, octant); | ||
|  | 	vec3 octahedron = pivotToCamera / sum; | ||
|  | 
 | ||
|  | 	if (octahedron.y < 0.0f) | ||
|  | 	{ | ||
|  | 		vec3 absolute = abs(octahedron); | ||
|  | 		octahedron.xz = octant.xz * vec2(1.0f - absolute.z, 1.0f - absolute.x); | ||
|  | 	} | ||
|  | 	return octahedron.xz; | ||
|  | } | ||
|  | 
 | ||
|  | vec2 VecToHemiSphereOct(vec3 pivotToCamera) | ||
|  | { | ||
|  | 	pivotToCamera.y = max(pivotToCamera.y, 0.001); | ||
|  | 	pivotToCamera = normalize(pivotToCamera); | ||
|  | 	vec3 octant = sign(pivotToCamera); | ||
|  | 
 | ||
|  | 	//  |x| + |y| + |z| = 1 | ||
|  | 	float sum = dot(pivotToCamera, octant); | ||
|  | 	vec3 octahedron = pivotToCamera / sum; | ||
|  | 
 | ||
|  | 	return vec2( | ||
|  | 	octahedron.x + octahedron.z, | ||
|  | 	octahedron.z - octahedron.x); | ||
|  | } | ||
|  | 
 | ||
|  | vec2 VectorToGrid(vec3 vec) | ||
|  | { | ||
|  | 	if (isFullSphere) | ||
|  | 	{ | ||
|  | 		return VecToSphereOct(vec); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		return VecToHemiSphereOct(vec); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | //for sphere | ||
|  | vec3 OctaSphereEnc(vec2 coord) | ||
|  | { | ||
|  | 	coord = (coord - 0.5) * 2.0; | ||
|  | 	vec3 position = vec3(coord.x, 0.0f, coord.y); | ||
|  | 	vec2 absolute = abs(position.xz); | ||
|  | 	position.y = 1.0f - absolute.x - absolute.y; | ||
|  | 
 | ||
|  | 	if (position.y < 0.0f) | ||
|  | 	{ | ||
|  | 		position.xz = sign(position.xz) * vec2(1.0f - absolute.y, 1.0f - absolute.x); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return position; | ||
|  | } | ||
|  | 
 | ||
|  | //for hemisphere | ||
|  | vec3 OctaHemiSphereEnc(vec2 coord) | ||
|  | {	 | ||
|  | 	 | ||
|  | 	vec3 position = vec3(coord.x - coord.y, 0.0f, -1.0 + coord.x + coord.y); | ||
|  | 	vec2 absolute = abs(position.xz); | ||
|  | 	position.y = 1.0f - absolute.x - absolute.y; | ||
|  | 	return position; | ||
|  | } | ||
|  | 
 | ||
|  | vec3 GridToVector(vec2 coord) | ||
|  | { | ||
|  | 	if (isFullSphere) | ||
|  | 	{ | ||
|  | 		return OctaSphereEnc(coord); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		return OctaHemiSphereEnc(coord); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | vec3 FrameXYToRay(vec2 frame, vec2 frameCountMinusOne) | ||
|  | { | ||
|  | 	//divide frame x y by framecount minus one to get 0-1 | ||
|  | 	vec2 f = (frame.xy/ frameCountMinusOne); | ||
|  | 	//bias and scale to -1 to 1 | ||
|  | 
 | ||
|  | 	vec3 vec = GridToVector(f); | ||
|  | 	vec = normalize(vec); | ||
|  | 	return vec; | ||
|  | } | ||
|  | 
 | ||
|  | vec3 SpriteProjection(vec3 pivotToCameraRayLocal, vec2 size, vec2 loc_uv) | ||
|  | { | ||
|  | 	vec3 z = normalize(pivotToCameraRayLocal); | ||
|  | 	vec3 x, y; | ||
|  | 	vec3 up = vec3(0,1,0); | ||
|  | 		//cross product doesnt work if we look directly from bottom | ||
|  | 	if (abs(z.y) > 0.999f) | ||
|  | 	{ | ||
|  | 		up = vec3(0,0,-1); | ||
|  | 	} | ||
|  | 	x = normalize(cross(up, z)); | ||
|  | 	y = normalize(cross(x, z)); | ||
|  | 
 | ||
|  | 	loc_uv -= vec2(0.5,0.5); | ||
|  | 	vec2 uv = (loc_uv) * 2.0; //-1 to 1 | ||
|  | 
 | ||
|  | 	vec3 newX = x * uv.x; | ||
|  | 	vec3 newY = y * uv.y; | ||
|  | 
 | ||
|  | 	vec2 vecSize = size * 0.5; | ||
|  | 
 | ||
|  | 	newX *= vecSize.x; | ||
|  | 	newY *= vecSize.y; | ||
|  | 
 | ||
|  | 	return newX + newY; | ||
|  | } | ||
|  | 
 | ||
|  | vec4 quadBlendWieghts(vec2 coords) | ||
|  | { | ||
|  | 	vec4 res; | ||
|  | 	/* 0 0 0 | ||
|  | 	0 0 0 | ||
|  | 	1 0 0 */ | ||
|  | 	res.x = min(1.0f - coords.x, 1.0f - coords.y); | ||
|  | 	/* 1 0 0 | ||
|  | 	0 0 0 | ||
|  | 	0 0 1 */ | ||
|  | 	res.y = abs(coords.x - coords.y); | ||
|  | 	/* 0 0 1 | ||
|  | 	0 0 0 | ||
|  | 	0 0 0 */ | ||
|  | 	res.z = min(coords.x, coords.y); | ||
|  | 	/* 0 0 0 | ||
|  | 	0 0 1 | ||
|  | 	0 1 1 */ | ||
|  | 	res.w = ceil(coords.x - coords.y); | ||
|  | 	//res.xyz /= (res.x + res.y + res.z); | ||
|  | 	return res; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | //this function works well in orthogonal projection. It works okeyish with further distances of perspective projection | ||
|  | vec2 virtualPlaneUV(vec3 plane_normal,vec3  plane_x, vec3  plane_y, vec3 pivotToCameraRay, vec3 vertexToCameraRay, float size) | ||
|  | { | ||
|  | 	plane_normal = normalize(plane_normal); | ||
|  | 	plane_x = normalize(plane_x); | ||
|  | 	plane_y = normalize(plane_y); | ||
|  | 
 | ||
|  | 	float projectedNormalRayLength = dot(plane_normal, pivotToCameraRay); | ||
|  | 	float projectedVertexRayLength = dot(plane_normal, vertexToCameraRay); | ||
|  | 	float offsetLength = projectedNormalRayLength/projectedVertexRayLength; | ||
|  | 	vec3 offsetVector = vertexToCameraRay * offsetLength - pivotToCameraRay; | ||
|  | 
 | ||
|  | 	vec2 duv = vec2( | ||
|  | 				dot(plane_x , offsetVector), | ||
|  | 				dot(plane_y, offsetVector) | ||
|  | 	); | ||
|  | 
 | ||
|  | 	//we are in space -1 to 1 | ||
|  | 	duv /= 2.0 * size; | ||
|  | 	duv += 0.5; | ||
|  | 	return duv; | ||
|  | } | ||
|  | 
 | ||
|  | void calcuateXYbasis(vec3 plane_normal, out vec3 plane_x, out vec3 plane_y) | ||
|  | { | ||
|  | 	vec3 up = vec3(0,1,0); | ||
|  | 		//cross product doesnt work if we look directly from bottom | ||
|  | 	if (abs(plane_normal.y) > 0.999f) | ||
|  | 	{ | ||
|  | 		up = vec3(0,0,1); | ||
|  | 	} | ||
|  | 	plane_x = normalize(cross(plane_normal, up)); | ||
|  | 	plane_y = normalize(cross(plane_x, plane_normal)); | ||
|  | } | ||
|  | 
 | ||
|  | vec3 projectOnPlaneBasis(vec3 ray, vec3 plane_normal, vec3 plane_x, vec3 plane_y) | ||
|  | { | ||
|  | 	//reproject plane normal onto planeXY basos | ||
|  | 	return normalize(vec3(  | ||
|  | 		dot(plane_x,ray),  | ||
|  | 		dot(plane_y,ray),  | ||
|  | 		dot(plane_normal,ray)  | ||
|  | 	)); | ||
|  | } | ||
|  | 
 | ||
|  | void vertex() | ||
|  | { | ||
|  | 	vec2 framesMinusOne = imposterFrames - vec2(1); | ||
|  | 	vec3 cameraPos_WS = (INV_VIEW_MATRIX * vec4(vec3(0), 1.0)).xyz; | ||
|  | 	vec3 cameraPos_OS = (inverse(MODEL_MATRIX) * vec4(cameraPos_WS, 1.0)).xyz; | ||
|  | 
 | ||
|  | 	//TODO: check if this is correct. We are using orho projected images, so | ||
|  | 	// camera far away | ||
|  | 	vec3 pivotToCameraRay = (cameraPos_OS) * 10.0; | ||
|  | 	vec3 pivotToCameraDir = normalize(cameraPos_OS); | ||
|  | 	 | ||
|  | 	vec2 grid = VectorToGrid(pivotToCameraDir); | ||
|  | 	//bias and scale to 0 to 1 | ||
|  | 	grid = clamp((grid + 1.0) * 0.5, vec2(0, 0), vec2(1, 1)); | ||
|  | 	grid *= framesMinusOne; | ||
|  | 	grid = clamp(grid, vec2(0), vec2(framesMinusOne)); | ||
|  | 	vec2 gridFloor = min(floor(grid), framesMinusOne); | ||
|  | 	vec2 gridFract = fract(grid); | ||
|  | 	 | ||
|  | 	//radius * 2 | ||
|  | 	vec2 size = vec2(2.0) * scale; | ||
|  | 	vec3 projected = SpriteProjection(pivotToCameraDir, size, UV); | ||
|  | 	vec3 vertexToCameraRay = (pivotToCameraRay - (projected)); | ||
|  | 	vec3 vertexToCameraDir = normalize(vertexToCameraRay); | ||
|  | 	 | ||
|  | 	frame1 = gridFloor; | ||
|  | 	quad_blend_weights = quadBlendWieghts(gridFract); | ||
|  | 	//convert frame coordinate to octahedron direction | ||
|  | 	vec3 projectedQuadADir = FrameXYToRay(frame1, framesMinusOne); | ||
|  | 	 | ||
|  | 	//calcute virtual planes projections | ||
|  | 	vec3 plane_x1, plane_y1; | ||
|  | 	calcuateXYbasis(projectedQuadADir, plane_x1, plane_y1); | ||
|  | 	uv_frame1 = virtualPlaneUV(projectedQuadADir, plane_x1, plane_y1, pivotToCameraRay, vertexToCameraRay, scale); | ||
|  | 	xy_frame1 = projectOnPlaneBasis(-vertexToCameraDir, projectedQuadADir, plane_x1, plane_y1).xy; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	//to fragment shader | ||
|  | 	VERTEX.xyz = projected + positionOffset; | ||
|  | 	VERTEX.xyz +=pivotToCameraDir* aabb_max; | ||
|  | 	vec3 v0 = abs(NORMAL.y) < 0.999 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, 0.0, 1.0); | ||
|  | 
 | ||
|  | 	NORMAL = normalize(pivotToCameraDir); | ||
|  | 	TANGENT= normalize(cross(NORMAL,v0)); | ||
|  | 	BINORMAL = normalize(cross(TANGENT,NORMAL)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | vec2 recalculateUV(vec2 uv_f,  vec2 frame, vec2 xy_f, vec2 frame_size) | ||
|  | { | ||
|  | 	//clamp for parallax sampling | ||
|  | 	uv_f = clamp(uv_f, vec2(0), vec2(1)); | ||
|  | 	return frame_size * (frame + uv_f); | ||
|  | } | ||
|  | 
 | ||
|  | void fragment() | ||
|  | { | ||
|  | 	vec2 quad_size = vec2(1.0f) / imposterFrames; | ||
|  | 	vec2 uv_f1 = recalculateUV(uv_frame1, frame1, xy_frame1, quad_size); | ||
|  | 	vec4 baseTex = textureLod(imposterTextureAlbedo, uv_f1, 0.0f); | ||
|  | 
 | ||
|  | 	ALBEDO = baseTex.rgb; | ||
|  | 	ALPHA = float(baseTex.a>alpha_clamp); | ||
|  | 	ALPHA_SCISSOR_THRESHOLD = 0.5; | ||
|  | 	ROUGHNESS = 1.0; | ||
|  | } |