rj-action-library/External/Imposter/materials/shaders/ImpostorShaderSimple.gdshader

374 lines
10 KiB
Plaintext
Raw Normal View History

2025-01-03 12:09:23 +00:00
shader_type spatial;
render_mode blend_mix, depth_draw_opaque, cull_back, diffuse_burley, specular_schlick_ggx;
uniform vec4 albedo : source_color = vec4(1, 1, 1, 1);
uniform float specular = 0.5f;
uniform float metallic = 1.0f;
uniform float roughness : hint_range(0.0f, 1.0f) = 1.0f;
uniform sampler2D imposterTextureAlbedo : source_color;
uniform sampler2D imposterTextureNormal : hint_normal;
uniform sampler2D imposterTextureDepth : hint_default_white;
uniform sampler2D imposterTextureOrm : hint_default_white;
uniform vec2 imposterFrames = vec2(16.0f, 16.0f);
uniform vec3 positionOffset = vec3(0.0f);
uniform bool isFullSphere = true;
uniform float alpha_clamp = 0.5f;
uniform bool dither = false;
uniform float scale = 1.0f;
uniform float depth_scale : hint_range(0, 1) = 0.0f;
uniform float normalmap_depth : hint_range(-5, 5) = 1.0f;
uniform float aabb_max = 1.0;
uniform vec2 indexOffset = vec2(0,0);
varying vec2 uv_frame1;
varying vec2 xy_frame1;
varying flat vec2 frame1;
varying flat vec3 frame1_normal;
varying vec2 uv_frame2;
varying vec2 xy_frame2;
varying flat vec2 frame2;
varying flat vec3 frame2_normal;
varying vec2 uv_frame3;
varying vec2 xy_frame3;
varying flat vec2 frame3;
varying flat vec3 frame3_normal;
varying vec4 quad_blend_weights;
vec2 VecToSphereOct(vec3 pivotToCamera)
{
vec3 octant = sign(pivotToCamera);
// |x| + |y| + |z| = 1
float sum = dot(pivotToCamera, octant);
vec3 octahedron = pivotToCamera / sum;
if (octahedron.y < 0.0f)
{
vec3 absolute = abs(octahedron);
octahedron.xz = octant.xz * vec2(1.0f - absolute.z, 1.0f - absolute.x);
}
return octahedron.xz;
}
vec2 VecToHemiSphereOct(vec3 pivotToCamera)
{
pivotToCamera.y = max(pivotToCamera.y, 0.001);
pivotToCamera = normalize(pivotToCamera);
vec3 octant = sign(pivotToCamera);
// |x| + |y| + |z| = 1
float sum = dot(pivotToCamera, octant);
vec3 octahedron = pivotToCamera / sum;
return vec2(
octahedron.x + octahedron.z,
octahedron.z - octahedron.x);
}
vec2 VectorToGrid(vec3 vec)
{
if (isFullSphere)
{
return VecToSphereOct(vec);
}
else
{
return VecToHemiSphereOct(vec);
}
}
//for sphere
vec3 OctaSphereEnc(vec2 coord)
{
coord = (coord - 0.5) * 2.0;
vec3 position = vec3(coord.x, 0.0f, coord.y);
vec2 absolute = abs(position.xz);
position.y = 1.0f - absolute.x - absolute.y;
if (position.y < 0.0f)
{
position.xz = sign(position.xz) * vec2(1.0f - absolute.y, 1.0f - absolute.x);
}
return position;
}
//for hemisphere
vec3 OctaHemiSphereEnc(vec2 coord)
{
vec3 position = vec3(coord.x - coord.y, 0.0f, -1.0 + coord.x + coord.y);
vec2 absolute = abs(position.xz);
position.y = 1.0f - absolute.x - absolute.y;
return position;
}
vec3 GridToVector(vec2 coord)
{
if (isFullSphere)
{
return OctaSphereEnc(coord);
}
else
{
return OctaHemiSphereEnc(coord);
}
}
vec3 FrameXYToRay(vec2 frame, vec2 frameCountMinusOne)
{
vec2 f = (frame.xy/ frameCountMinusOne);
vec3 vec = GridToVector(f);
vec = normalize(vec);
return vec;
}
vec3 SpriteProjection(vec3 pivotToCameraRayLocal, vec2 size, vec2 loc_uv)
{
vec3 z = normalize(pivotToCameraRayLocal);
vec3 x, y;
vec3 up = vec3(0,1,0);
if (abs(z.y) > 0.999f)
{
up = vec3(0,0,-1);
}
x = normalize(cross(up, z));
y = normalize(cross(x, z));
loc_uv -= vec2(0.5,0.5);
vec2 uv = (loc_uv) * 2.0; //-1 to 1
vec3 newX = x * uv.x;
vec3 newY = y * uv.y;
vec2 vecSize = size * 0.5;
newX *= vecSize.x;
newY *= vecSize.y;
return newX + newY;
}
vec4 quadBlendWieghts(vec2 coords)
{
vec4 res;
/* 0 0 0
0 0 0
1 0 0 */
res.x = min(1.0f - coords.x, 1.0f - coords.y);
/* 1 0 0
0 0 0
0 0 1 */
res.y = abs(coords.x - coords.y);
/* 0 0 1
0 0 0
0 0 0 */
res.z = min(coords.x, coords.y);
/* 0 0 0
0 0 1
0 1 1 */
res.w = ceil(coords.x - coords.y);
//res.xyz /= (res.x + res.y + res.z);
return res;
}
vec2 virtualPlaneUV(vec3 plane_normal,vec3 plane_x, vec3 plane_y, vec3 pivotToCameraRay, vec3 vertexToCameraRay, float size)
{
plane_normal = normalize(plane_normal);
plane_x = normalize(plane_x);
plane_y = normalize(plane_y);
float projectedNormalRayLength = dot(plane_normal, pivotToCameraRay);
float projectedVertexRayLength = dot(plane_normal, vertexToCameraRay);
float offsetLength = projectedNormalRayLength/projectedVertexRayLength;
vec3 offsetVector = vertexToCameraRay * offsetLength - pivotToCameraRay;
vec2 duv = vec2(
dot(plane_x , offsetVector),
dot(plane_y, offsetVector)
);
//we are in space -1 to 1
duv /= 2.0 * size;
duv += 0.5;
return duv;
}
void calcuateXYbasis(vec3 plane_normal, out vec3 plane_x, out vec3 plane_y)
{
vec3 up = vec3(0,1,0);
//cross product doesnt work if we look directly from bottom
if (abs(plane_normal.y) > 0.999f)
{
up = vec3(0,0,1);
}
plane_x = normalize(cross(plane_normal, up));
plane_y = normalize(cross(plane_x, plane_normal));
}
vec3 projectOnPlaneBasis(vec3 ray, vec3 plane_normal, vec3 plane_x, vec3 plane_y)
{
//reproject plane normal onto planeXY basos
return normalize(vec3(
dot(plane_x,ray),
dot(plane_y,ray),
dot(plane_normal,ray)
));
}
void vertex()
{
vec2 framesMinusOne = imposterFrames - vec2(1);
vec3 cameraPos_WS = (INV_VIEW_MATRIX * vec4(vec3(0), 1.0)).xyz;
vec3 cameraPos_OS = (inverse(MODEL_MATRIX) * vec4(cameraPos_WS, 1.0)).xyz;
//TODO: check if this is correct. We are using orho projected images, so
// camera far away
vec3 pivotToCameraRay = (cameraPos_OS) * 10.0;
vec3 pivotToCameraDir = normalize(cameraPos_OS);
vec2 grid = VectorToGrid(pivotToCameraDir);
//bias and scale to 0 to 1
grid = clamp((grid + 1.0) * 0.5, vec2(0, 0), vec2(1, 1));
grid *= framesMinusOne;
grid = clamp(grid, vec2(0), vec2(framesMinusOne));
vec2 gridFloor = min(floor(grid), framesMinusOne);
vec2 gridFract = fract(grid);
//radius * 2
vec2 size = vec2(2.0) * scale;
vec3 projected = SpriteProjection(pivotToCameraDir, size, UV);
vec3 vertexToCameraRay = (pivotToCameraRay - (projected));
vec3 vertexToCameraDir = normalize(vertexToCameraRay);
frame1 = gridFloor;
quad_blend_weights = quadBlendWieghts(gridFract);
//convert frame coordinate to octahedron direction
vec3 projectedQuadADir = FrameXYToRay(frame1, framesMinusOne);
frame2 = clamp(frame1 + mix(vec2(0, 1), vec2(1, 0), quad_blend_weights.w), vec2(0,0), framesMinusOne);
vec3 projectedQuadBDir = FrameXYToRay(frame2, framesMinusOne);
frame3 = clamp(frame1 + vec2(1), vec2(0,0), framesMinusOne);
vec3 projectedQuadCDir = FrameXYToRay(frame3, framesMinusOne);
frame1_normal = (MODELVIEW_MATRIX *vec4(projectedQuadADir, 0)).xyz;
frame2_normal = (MODELVIEW_MATRIX *vec4(projectedQuadBDir, 0)).xyz;
frame3_normal = (MODELVIEW_MATRIX *vec4(projectedQuadCDir, 0)).xyz;
//calcute virtual planes projections
vec3 plane_x1, plane_y1, plane_x2, plane_y2, plane_x3, plane_y3;
calcuateXYbasis(projectedQuadADir, plane_x1, plane_y1);
uv_frame1 = virtualPlaneUV(projectedQuadADir, plane_x1, plane_y1, pivotToCameraRay, vertexToCameraRay, scale);
xy_frame1 = projectOnPlaneBasis(-vertexToCameraDir, projectedQuadADir, plane_x1, plane_y1).xy;
calcuateXYbasis(projectedQuadBDir, plane_x2, plane_y2);
uv_frame2 = virtualPlaneUV(projectedQuadBDir, plane_x2, plane_y2, pivotToCameraRay, vertexToCameraRay, scale);
xy_frame2 = projectOnPlaneBasis(-vertexToCameraDir, projectedQuadBDir, plane_x2, plane_y2).xy;
calcuateXYbasis(projectedQuadCDir, plane_x3, plane_y3);
uv_frame3 = virtualPlaneUV(projectedQuadCDir, plane_x3, plane_y3, pivotToCameraRay, vertexToCameraRay, scale);
xy_frame3 = projectOnPlaneBasis(-vertexToCameraDir, projectedQuadCDir, plane_x3, plane_y3).xy;
//to fragment shader
VERTEX.xyz = projected + positionOffset;
VERTEX.xyz +=pivotToCameraDir* aabb_max;
NORMAL = normalize(pivotToCameraDir);
TANGENT= normalize(cross(NORMAL,vec3(0.0, 1.0, 0.0)));
BINORMAL = normalize(cross(TANGENT,NORMAL));
}
vec4 blenderColors(vec2 uv_1, vec2 uv_2, vec2 uv_3, vec4 grid_weights, sampler2D atlasTexture)
{
vec4 quad_a, quad_b, quad_c;
quad_a = textureLod(atlasTexture, uv_1, 0.0f);
quad_b = textureLod(atlasTexture, uv_2, 0.0f);
quad_c = textureLod(atlasTexture, uv_3, 0.0f);
return quad_a * grid_weights.x + quad_b * grid_weights.y + quad_c * grid_weights.z;
}
vec3 normal_from_normalmap(vec4 normalTex, vec3 tangent, vec3 binormal, vec3 f_norm)
{
vec3 normalmap;
normalmap.xy = normalTex.xy * 2.0 - 1.0;
normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy)));
normalmap = normalize(normalmap);
return normalize(tangent * normalmap.x + binormal * normalmap.y + f_norm * normalmap.z);
}
vec3 blendedNormals(vec2 uv_1, vec3 f1_n,
vec2 uv_2, vec3 f2_n,
vec2 uv_3, vec3 f3_n,
vec3 tangent, vec3 binormal,
vec4 grid_weights, sampler2D atlasTexture)
{
vec4 quad_a, quad_b, quad_c;
quad_a = textureLod(atlasTexture, uv_1, 0.0f);
quad_b = textureLod(atlasTexture, uv_2, 0.0f);
quad_c = textureLod(atlasTexture, uv_3, 0.0f);
vec3 norm1 = normal_from_normalmap(quad_a, tangent, binormal, f1_n);
vec3 norm2 = normal_from_normalmap(quad_b, tangent, binormal, f2_n);
vec3 norm3 = normal_from_normalmap(quad_c, tangent, binormal, f3_n);
return normalize(norm1 * grid_weights.x + norm2 * grid_weights.y + norm3 * grid_weights.z);
}
vec2 recalculateUV(vec2 uv_f, vec2 frame, vec2 xy_f, vec2 frame_size, float d_scale, sampler2D depthTexture)
{
//clamp for parallax sampling
uv_f = clamp(uv_f, vec2(0), vec2(1));
vec2 uv_quad = frame_size * (frame + uv_f);
//paralax
vec4 n_depth = (textureLod( depthTexture, uv_quad, 0 ));
uv_f = xy_f * (0.5-n_depth.r) * d_scale + uv_f;
//clamp parallax offset
uv_f = clamp(uv_f, vec2(0), vec2(1));
uv_f = frame_size * (frame + uv_f);
//clamped full UV
return clamp(uv_f, vec2(0), vec2(1));
}
void fragment()
{
vec2 quad_size = vec2(1.0f) / imposterFrames;
vec2 uv = recalculateUV(uv_frame2, frame2, xy_frame2, quad_size, depth_scale, imposterTextureDepth);
vec4 albedoTex = texture( imposterTextureAlbedo, uv );
ALBEDO = albedoTex.rgb;
NORMAL = texture( imposterTextureNormal, uv ).rgb;
ALPHA = albedoTex.a;
ALPHA_SCISSOR_THRESHOLD = 0.5;
vec4 ormTex = texture( imposterTextureOrm, uv );
METALLIC = ormTex.b * metallic;
SPECULAR = specular;
ROUGHNESS = ormTex.g * roughness;
}