372 lines
12 KiB
C#
372 lines
12 KiB
C#
|
// -----------------------------------------------------------------------
|
|||
|
// <copyright file="VertexSorter.cs" company="">
|
|||
|
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
|
|||
|
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
|
|||
|
// </copyright>
|
|||
|
// -----------------------------------------------------------------------
|
|||
|
|
|||
|
namespace TriangleNet.Tools
|
|||
|
{
|
|||
|
using System;
|
|||
|
using TriangleNet.Geometry;
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Sort an array of points using quicksort.
|
|||
|
/// </summary>
|
|||
|
public class VertexSorter
|
|||
|
{
|
|||
|
private const int RANDOM_SEED = 57113;
|
|||
|
|
|||
|
Random rand;
|
|||
|
|
|||
|
Vertex[] points;
|
|||
|
|
|||
|
VertexSorter(Vertex[] points, int seed)
|
|||
|
{
|
|||
|
this.points = points;
|
|||
|
this.rand = new Random(seed);
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Sorts the given vertex array by x-coordinate.
|
|||
|
/// </summary>
|
|||
|
/// <param name="array">The vertex array.</param>
|
|||
|
/// <param name="seed">Random seed used for pivoting.</param>
|
|||
|
public static void Sort(Vertex[] array, int seed = RANDOM_SEED)
|
|||
|
{
|
|||
|
var qs = new VertexSorter(array, seed);
|
|||
|
|
|||
|
qs.QuickSort(0, array.Length - 1);
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Impose alternating cuts on given vertex array.
|
|||
|
/// </summary>
|
|||
|
/// <param name="array">The vertex array.</param>
|
|||
|
/// <param name="length">The number of vertices to sort.</param>
|
|||
|
/// <param name="seed">Random seed used for pivoting.</param>
|
|||
|
public static void Alternate(Vertex[] array, int length, int seed = RANDOM_SEED)
|
|||
|
{
|
|||
|
var qs = new VertexSorter(array, seed);
|
|||
|
|
|||
|
int divider = length >> 1;
|
|||
|
|
|||
|
// Re-sort the array of vertices to accommodate alternating cuts.
|
|||
|
if (length - divider >= 2)
|
|||
|
{
|
|||
|
if (divider >= 2)
|
|||
|
{
|
|||
|
qs.AlternateAxes(0, divider - 1, 1);
|
|||
|
}
|
|||
|
|
|||
|
qs.AlternateAxes(divider, length - 1, 1);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#region Quicksort
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Sort an array of vertices by x-coordinate, using the y-coordinate as a secondary key.
|
|||
|
/// </summary>
|
|||
|
/// <param name="left"></param>
|
|||
|
/// <param name="right"></param>
|
|||
|
/// <remarks>
|
|||
|
/// Uses quicksort. Randomized O(n log n) time. No, I did not make any of
|
|||
|
/// the usual quicksort mistakes.
|
|||
|
/// </remarks>
|
|||
|
private void QuickSort(int left, int right)
|
|||
|
{
|
|||
|
int oleft = left;
|
|||
|
int oright = right;
|
|||
|
int arraysize = right - left + 1;
|
|||
|
int pivot;
|
|||
|
double pivotx, pivoty;
|
|||
|
Vertex temp;
|
|||
|
|
|||
|
var array = this.points;
|
|||
|
|
|||
|
if (arraysize < 32)
|
|||
|
{
|
|||
|
// Insertion sort
|
|||
|
for (int i = left + 1; i <= right; i++)
|
|||
|
{
|
|||
|
var a = array[i];
|
|||
|
int j = i - 1;
|
|||
|
while (j >= left && (array[j].x > a.x || (array[j].x == a.x && array[j].y > a.y)))
|
|||
|
{
|
|||
|
array[j + 1] = array[j];
|
|||
|
j--;
|
|||
|
}
|
|||
|
array[j + 1] = a;
|
|||
|
}
|
|||
|
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
// Choose a random pivot to split the array.
|
|||
|
pivot = rand.Next(left, right);
|
|||
|
pivotx = array[pivot].x;
|
|||
|
pivoty = array[pivot].y;
|
|||
|
// Split the array.
|
|||
|
left--;
|
|||
|
right++;
|
|||
|
while (left < right)
|
|||
|
{
|
|||
|
// Search for a vertex whose x-coordinate is too large for the left.
|
|||
|
do
|
|||
|
{
|
|||
|
left++;
|
|||
|
}
|
|||
|
while ((left <= right) && ((array[left].x < pivotx) ||
|
|||
|
((array[left].x == pivotx) && (array[left].y < pivoty))));
|
|||
|
|
|||
|
// Search for a vertex whose x-coordinate is too small for the right.
|
|||
|
do
|
|||
|
{
|
|||
|
right--;
|
|||
|
}
|
|||
|
while ((left <= right) && ((array[right].x > pivotx) ||
|
|||
|
((array[right].x == pivotx) && (array[right].y > pivoty))));
|
|||
|
|
|||
|
if (left < right)
|
|||
|
{
|
|||
|
// Swap the left and right vertices.
|
|||
|
temp = array[left];
|
|||
|
array[left] = array[right];
|
|||
|
array[right] = temp;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (left > oleft)
|
|||
|
{
|
|||
|
// Recursively sort the left subset.
|
|||
|
QuickSort(oleft, left);
|
|||
|
}
|
|||
|
|
|||
|
if (oright > right + 1)
|
|||
|
{
|
|||
|
// Recursively sort the right subset.
|
|||
|
QuickSort(right + 1, oright);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#endregion
|
|||
|
|
|||
|
#region Alternate axes
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Sorts the vertices as appropriate for the divide-and-conquer algorithm with
|
|||
|
/// alternating cuts.
|
|||
|
/// </summary>
|
|||
|
/// <param name="left"></param>
|
|||
|
/// <param name="right"></param>
|
|||
|
/// <param name="axis"></param>
|
|||
|
/// <remarks>
|
|||
|
/// Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1.
|
|||
|
/// For the base case, subsets containing only two or three vertices are
|
|||
|
/// always sorted by x-coordinate.
|
|||
|
/// </remarks>
|
|||
|
private void AlternateAxes(int left, int right, int axis)
|
|||
|
{
|
|||
|
int size = right - left + 1;
|
|||
|
int divider = size >> 1;
|
|||
|
|
|||
|
if (size <= 3)
|
|||
|
{
|
|||
|
// Recursive base case: subsets of two or three vertices will be
|
|||
|
// handled specially, and should always be sorted by x-coordinate.
|
|||
|
axis = 0;
|
|||
|
}
|
|||
|
|
|||
|
// Partition with a horizontal or vertical cut.
|
|||
|
if (axis == 0)
|
|||
|
{
|
|||
|
VertexMedianX(left, right, left + divider);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
VertexMedianY(left, right, left + divider);
|
|||
|
}
|
|||
|
|
|||
|
// Recursively partition the subsets with a cross cut.
|
|||
|
if (size - divider >= 2)
|
|||
|
{
|
|||
|
if (divider >= 2)
|
|||
|
{
|
|||
|
AlternateAxes(left, left + divider - 1, 1 - axis);
|
|||
|
}
|
|||
|
|
|||
|
AlternateAxes(left + divider, right, 1 - axis);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// An order statistic algorithm, almost. Shuffles an array of vertices so that the
|
|||
|
/// first 'median' vertices occur lexicographically before the remaining vertices.
|
|||
|
/// </summary>
|
|||
|
/// <param name="left"></param>
|
|||
|
/// <param name="right"></param>
|
|||
|
/// <param name="median"></param>
|
|||
|
/// <remarks>
|
|||
|
/// Uses the x-coordinate as the primary key. Very similar to the QuickSort()
|
|||
|
/// procedure, but runs in randomized linear time.
|
|||
|
/// </remarks>
|
|||
|
private void VertexMedianX(int left, int right, int median)
|
|||
|
{
|
|||
|
int arraysize = right - left + 1;
|
|||
|
int oleft = left, oright = right;
|
|||
|
int pivot;
|
|||
|
double pivot1, pivot2;
|
|||
|
Vertex temp;
|
|||
|
|
|||
|
var array = this.points;
|
|||
|
|
|||
|
if (arraysize == 2)
|
|||
|
{
|
|||
|
// Recursive base case.
|
|||
|
if ((array[left].x > array[right].x) ||
|
|||
|
((array[left].x == array[right].x) &&
|
|||
|
(array[left].y > array[right].y)))
|
|||
|
{
|
|||
|
temp = array[right];
|
|||
|
array[right] = array[left];
|
|||
|
array[left] = temp;
|
|||
|
}
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
// Choose a random pivot to split the array.
|
|||
|
pivot = rand.Next(left, right);
|
|||
|
pivot1 = array[pivot].x;
|
|||
|
pivot2 = array[pivot].y;
|
|||
|
|
|||
|
left--;
|
|||
|
right++;
|
|||
|
while (left < right)
|
|||
|
{
|
|||
|
// Search for a vertex whose x-coordinate is too large for the left.
|
|||
|
do
|
|||
|
{
|
|||
|
left++;
|
|||
|
}
|
|||
|
while ((left <= right) && ((array[left].x < pivot1) ||
|
|||
|
((array[left].x == pivot1) && (array[left].y < pivot2))));
|
|||
|
|
|||
|
// Search for a vertex whose x-coordinate is too small for the right.
|
|||
|
do
|
|||
|
{
|
|||
|
right--;
|
|||
|
}
|
|||
|
while ((left <= right) && ((array[right].x > pivot1) ||
|
|||
|
((array[right].x == pivot1) && (array[right].y > pivot2))));
|
|||
|
|
|||
|
if (left < right)
|
|||
|
{
|
|||
|
// Swap the left and right vertices.
|
|||
|
temp = array[left];
|
|||
|
array[left] = array[right];
|
|||
|
array[right] = temp;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Unlike in vertexsort(), at most one of the following conditionals is true.
|
|||
|
if (left > median)
|
|||
|
{
|
|||
|
// Recursively shuffle the left subset.
|
|||
|
VertexMedianX(oleft, left - 1, median);
|
|||
|
}
|
|||
|
|
|||
|
if (right < median - 1)
|
|||
|
{
|
|||
|
// Recursively shuffle the right subset.
|
|||
|
VertexMedianX(right + 1, oright, median);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// An order statistic algorithm, almost. Shuffles an array of vertices so that
|
|||
|
/// the first 'median' vertices occur lexicographically before the remaining vertices.
|
|||
|
/// </summary>
|
|||
|
/// <param name="left"></param>
|
|||
|
/// <param name="right"></param>
|
|||
|
/// <param name="median"></param>
|
|||
|
/// <remarks>
|
|||
|
/// Uses the y-coordinate as the primary key. Very similar to the QuickSort()
|
|||
|
/// procedure, but runs in randomized linear time.
|
|||
|
/// </remarks>
|
|||
|
private void VertexMedianY(int left, int right, int median)
|
|||
|
{
|
|||
|
int arraysize = right - left + 1;
|
|||
|
int oleft = left, oright = right;
|
|||
|
int pivot;
|
|||
|
double pivot1, pivot2;
|
|||
|
Vertex temp;
|
|||
|
|
|||
|
var array = this.points;
|
|||
|
|
|||
|
if (arraysize == 2)
|
|||
|
{
|
|||
|
// Recursive base case.
|
|||
|
if ((array[left].y > array[right].y) ||
|
|||
|
((array[left].y == array[right].y) &&
|
|||
|
(array[left].x > array[right].x)))
|
|||
|
{
|
|||
|
temp = array[right];
|
|||
|
array[right] = array[left];
|
|||
|
array[left] = temp;
|
|||
|
}
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
// Choose a random pivot to split the array.
|
|||
|
pivot = rand.Next(left, right);
|
|||
|
pivot1 = array[pivot].y;
|
|||
|
pivot2 = array[pivot].x;
|
|||
|
|
|||
|
left--;
|
|||
|
right++;
|
|||
|
while (left < right)
|
|||
|
{
|
|||
|
// Search for a vertex whose x-coordinate is too large for the left.
|
|||
|
do
|
|||
|
{
|
|||
|
left++;
|
|||
|
}
|
|||
|
while ((left <= right) && ((array[left].y < pivot1) ||
|
|||
|
((array[left].y == pivot1) && (array[left].x < pivot2))));
|
|||
|
|
|||
|
// Search for a vertex whose x-coordinate is too small for the right.
|
|||
|
do
|
|||
|
{
|
|||
|
right--;
|
|||
|
}
|
|||
|
while ((left <= right) && ((array[right].y > pivot1) ||
|
|||
|
((array[right].y == pivot1) && (array[right].x > pivot2))));
|
|||
|
|
|||
|
if (left < right)
|
|||
|
{
|
|||
|
// Swap the left and right vertices.
|
|||
|
temp = array[left];
|
|||
|
array[left] = array[right];
|
|||
|
array[right] = temp;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Unlike in QuickSort(), at most one of the following conditionals is true.
|
|||
|
if (left > median)
|
|||
|
{
|
|||
|
// Recursively shuffle the left subset.
|
|||
|
VertexMedianY(oleft, left - 1, median);
|
|||
|
}
|
|||
|
|
|||
|
if (right < median - 1)
|
|||
|
{
|
|||
|
// Recursively shuffle the right subset.
|
|||
|
VertexMedianY(right + 1, oright, median);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#endregion
|
|||
|
}
|
|||
|
}
|