686 lines
25 KiB
C#
686 lines
25 KiB
C#
|
// -----------------------------------------------------------------------
|
|||
|
// <copyright file="CuthillMcKee.cs" company="">
|
|||
|
// Original Matlab code by John Burkardt, Florida State University
|
|||
|
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
|
|||
|
// </copyright>
|
|||
|
// -----------------------------------------------------------------------
|
|||
|
|
|||
|
namespace TriangleNet.Tools
|
|||
|
{
|
|||
|
using System;
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Applies the Cuthill and McKee renumbering algorithm to reduce the bandwidth of
|
|||
|
/// the adjacency matrix associated with the mesh.
|
|||
|
/// </summary>
|
|||
|
public class CuthillMcKee
|
|||
|
{
|
|||
|
// The adjacency matrix of the mesh.
|
|||
|
AdjacencyMatrix matrix;
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Gets the permutation vector for the Reverse Cuthill-McKee numbering.
|
|||
|
/// </summary>
|
|||
|
/// <param name="mesh">The mesh.</param>
|
|||
|
/// <returns>Permutation vector.</returns>
|
|||
|
public int[] Renumber(Mesh mesh)
|
|||
|
{
|
|||
|
// Algorithm needs linear numbering of the nodes.
|
|||
|
mesh.Renumber(NodeNumbering.Linear);
|
|||
|
|
|||
|
return Renumber(new AdjacencyMatrix(mesh));
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Gets the permutation vector for the Reverse Cuthill-McKee numbering.
|
|||
|
/// </summary>
|
|||
|
/// <param name="mesh">The mesh.</param>
|
|||
|
/// <returns>Permutation vector.</returns>
|
|||
|
public int[] Renumber(AdjacencyMatrix matrix)
|
|||
|
{
|
|||
|
this.matrix = matrix;
|
|||
|
|
|||
|
int bandwidth1 = matrix.Bandwidth();
|
|||
|
|
|||
|
var pcol = matrix.ColumnPointers;
|
|||
|
|
|||
|
// Adjust column pointers (1-based indexing).
|
|||
|
Shift(pcol, true);
|
|||
|
|
|||
|
// TODO: Make RCM work with 0-based matrix.
|
|||
|
|
|||
|
// Compute the RCM permutation.
|
|||
|
int[] perm = GenerateRcm();
|
|||
|
|
|||
|
int[] perm_inv = PermInverse(perm);
|
|||
|
|
|||
|
int bandwidth2 = PermBandwidth(perm, perm_inv);
|
|||
|
|
|||
|
if (Log.Verbose)
|
|||
|
{
|
|||
|
Log.Instance.Info(String.Format("Reverse Cuthill-McKee (Bandwidth: {0} > {1})",
|
|||
|
bandwidth1, bandwidth2));
|
|||
|
}
|
|||
|
|
|||
|
// Adjust column pointers (0-based indexing).
|
|||
|
Shift(pcol, false);
|
|||
|
|
|||
|
return perm_inv;
|
|||
|
}
|
|||
|
|
|||
|
#region RCM
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Finds the reverse Cuthill-Mckee ordering for a general graph.
|
|||
|
/// </summary>
|
|||
|
/// <returns>The RCM ordering.</returns>
|
|||
|
/// <remarks>
|
|||
|
/// For each connected component in the graph, the routine obtains
|
|||
|
/// an ordering by calling RCM.
|
|||
|
/// </remarks>
|
|||
|
int[] GenerateRcm()
|
|||
|
{
|
|||
|
// Number of nodes in the mesh.
|
|||
|
int n = matrix.N;
|
|||
|
|
|||
|
int[] perm = new int[n];
|
|||
|
|
|||
|
int i, num, root;
|
|||
|
int iccsze = 0;
|
|||
|
int level_num = 0;
|
|||
|
|
|||
|
/// Index vector for a level structure. The level structure is stored in the
|
|||
|
/// currently unused spaces in the permutation vector PERM.
|
|||
|
int[] level_row = new int[n + 1];
|
|||
|
|
|||
|
/// Marks variables that have been numbered.
|
|||
|
int[] mask = new int[n];
|
|||
|
|
|||
|
for (i = 0; i < n; i++)
|
|||
|
{
|
|||
|
mask[i] = 1;
|
|||
|
}
|
|||
|
|
|||
|
num = 1;
|
|||
|
|
|||
|
for (i = 0; i < n; i++)
|
|||
|
{
|
|||
|
// For each masked connected component...
|
|||
|
if (mask[i] != 0)
|
|||
|
{
|
|||
|
root = i;
|
|||
|
|
|||
|
// Find a pseudo-peripheral node ROOT. The level structure found by
|
|||
|
// ROOT_FIND is stored starting at PERM(NUM).
|
|||
|
FindRoot(ref root, mask, ref level_num, level_row, perm, num - 1);
|
|||
|
|
|||
|
// RCM orders the component using ROOT as the starting node.
|
|||
|
Rcm(root, mask, perm, num - 1, ref iccsze);
|
|||
|
|
|||
|
num += iccsze;
|
|||
|
|
|||
|
// We can stop once every node is in one of the connected components.
|
|||
|
if (n < num)
|
|||
|
{
|
|||
|
return perm;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return perm;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// RCM renumbers a connected component by the reverse Cuthill McKee algorithm.
|
|||
|
/// </summary>
|
|||
|
/// <param name="root">the node that defines the connected component. It is used as the starting
|
|||
|
/// point for the RCM ordering.</param>
|
|||
|
/// <param name="mask">Input/output, int MASK(NODE_NUM), a mask for the nodes. Only those nodes with
|
|||
|
/// nonzero input mask values are considered by the routine. The nodes numbered by RCM will have
|
|||
|
/// their mask values set to zero.</param>
|
|||
|
/// <param name="perm">Output, int PERM(NODE_NUM), the RCM ordering.</param>
|
|||
|
/// <param name="iccsze">Output, int ICCSZE, the size of the connected component that has been numbered.</param>
|
|||
|
/// <param name="node_num">the number of nodes.</param>
|
|||
|
/// <remarks>
|
|||
|
/// The connected component is specified by a node ROOT and a mask.
|
|||
|
/// The numbering starts at the root node.
|
|||
|
///
|
|||
|
/// An outline of the algorithm is as follows:
|
|||
|
///
|
|||
|
/// X(1) = ROOT.
|
|||
|
///
|
|||
|
/// for ( I = 1 to N-1)
|
|||
|
/// Find all unlabeled neighbors of X(I),
|
|||
|
/// assign them the next available labels, in order of increasing degree.
|
|||
|
///
|
|||
|
/// When done, reverse the ordering.
|
|||
|
/// </remarks>
|
|||
|
void Rcm(int root, int[] mask, int[] perm, int offset, ref int iccsze)
|
|||
|
{
|
|||
|
int[] pcol = matrix.ColumnPointers;
|
|||
|
int[] irow = matrix.RowIndices;
|
|||
|
|
|||
|
int fnbr;
|
|||
|
int i, j, k, l;
|
|||
|
int jstop, jstrt;
|
|||
|
int lbegin, lnbr, lperm, lvlend;
|
|||
|
int nbr, node;
|
|||
|
|
|||
|
// Number of nodes in the mesh.
|
|||
|
int n = matrix.N;
|
|||
|
|
|||
|
/// Workspace, int DEG[NODE_NUM], a temporary vector used to hold
|
|||
|
/// the degree of the nodes in the section graph specified by mask and root.
|
|||
|
int[] deg = new int[n];
|
|||
|
|
|||
|
// Find the degrees of the nodes in the component specified by MASK and ROOT.
|
|||
|
Degree(root, mask, deg, ref iccsze, perm, offset);
|
|||
|
|
|||
|
mask[root] = 0;
|
|||
|
|
|||
|
if (iccsze <= 1)
|
|||
|
{
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
lvlend = 0;
|
|||
|
lnbr = 1;
|
|||
|
|
|||
|
// LBEGIN and LVLEND point to the beginning and
|
|||
|
// the end of the current level respectively.
|
|||
|
while (lvlend < lnbr)
|
|||
|
{
|
|||
|
lbegin = lvlend + 1;
|
|||
|
lvlend = lnbr;
|
|||
|
|
|||
|
for (i = lbegin; i <= lvlend; i++)
|
|||
|
{
|
|||
|
// For each node in the current level...
|
|||
|
node = perm[offset + i - 1];
|
|||
|
jstrt = pcol[node];
|
|||
|
jstop = pcol[node + 1] - 1;
|
|||
|
|
|||
|
// Find the unnumbered neighbors of NODE.
|
|||
|
|
|||
|
// FNBR and LNBR point to the first and last neighbors
|
|||
|
// of the current node in PERM.
|
|||
|
fnbr = lnbr + 1;
|
|||
|
|
|||
|
for (j = jstrt; j <= jstop; j++)
|
|||
|
{
|
|||
|
nbr = irow[j - 1];
|
|||
|
|
|||
|
if (mask[nbr] != 0)
|
|||
|
{
|
|||
|
lnbr += 1;
|
|||
|
mask[nbr] = 0;
|
|||
|
perm[offset + lnbr - 1] = nbr;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Node has neighbors
|
|||
|
if (lnbr > fnbr)
|
|||
|
{
|
|||
|
// Sort the neighbors of NODE in increasing order by degree.
|
|||
|
// Linear insertion is used.
|
|||
|
k = fnbr;
|
|||
|
|
|||
|
while (k < lnbr)
|
|||
|
{
|
|||
|
l = k;
|
|||
|
k = k + 1;
|
|||
|
nbr = perm[offset + k - 1];
|
|||
|
|
|||
|
while (fnbr < l)
|
|||
|
{
|
|||
|
lperm = perm[offset + l - 1];
|
|||
|
|
|||
|
if (deg[lperm - 1] <= deg[nbr - 1])
|
|||
|
{
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
perm[offset + l] = lperm;
|
|||
|
l = l - 1;
|
|||
|
}
|
|||
|
perm[offset + l] = nbr;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// We now have the Cuthill-McKee ordering. Reverse it.
|
|||
|
ReverseVector(perm, offset, iccsze);
|
|||
|
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Finds a pseudo-peripheral node.
|
|||
|
/// </summary>
|
|||
|
/// <param name="root">On input, ROOT is a node in the the component of the graph for
|
|||
|
/// which a pseudo-peripheral node is sought. On output, ROOT is the pseudo-peripheral
|
|||
|
/// node obtained.</param>
|
|||
|
/// <param name="mask">MASK[NODE_NUM], specifies a section subgraph. Nodes for which MASK
|
|||
|
/// is zero are ignored by FNROOT.</param>
|
|||
|
/// <param name="level_num">Output, int LEVEL_NUM, is the number of levels in the level
|
|||
|
/// structure rooted at the node ROOT.</param>
|
|||
|
/// <param name="level_row">Output, int LEVEL_ROW(NODE_NUM+1), the level structure array pair
|
|||
|
/// containing the level structure found.</param>
|
|||
|
/// <param name="level">Output, int LEVEL(NODE_NUM), the level structure array pair
|
|||
|
/// containing the level structure found.</param>
|
|||
|
/// <param name="node_num">the number of nodes.</param>
|
|||
|
/// <remarks>
|
|||
|
/// The diameter of a graph is the maximum distance (number of edges)
|
|||
|
/// between any two nodes of the graph.
|
|||
|
///
|
|||
|
/// The eccentricity of a node is the maximum distance between that
|
|||
|
/// node and any other node of the graph.
|
|||
|
///
|
|||
|
/// A peripheral node is a node whose eccentricity equals the
|
|||
|
/// diameter of the graph.
|
|||
|
///
|
|||
|
/// A pseudo-peripheral node is an approximation to a peripheral node;
|
|||
|
/// it may be a peripheral node, but all we know is that we tried our
|
|||
|
/// best.
|
|||
|
///
|
|||
|
/// The routine is given a graph, and seeks pseudo-peripheral nodes,
|
|||
|
/// using a modified version of the scheme of Gibbs, Poole and
|
|||
|
/// Stockmeyer. It determines such a node for the section subgraph
|
|||
|
/// specified by MASK and ROOT.
|
|||
|
///
|
|||
|
/// The routine also determines the level structure associated with
|
|||
|
/// the given pseudo-peripheral node; that is, how far each node
|
|||
|
/// is from the pseudo-peripheral node. The level structure is
|
|||
|
/// returned as a list of nodes LS, and pointers to the beginning
|
|||
|
/// of the list of nodes that are at a distance of 0, 1, 2, ...,
|
|||
|
/// NODE_NUM-1 from the pseudo-peripheral node.
|
|||
|
///
|
|||
|
/// Reference:
|
|||
|
/// Alan George, Joseph Liu,
|
|||
|
/// Computer Solution of Large Sparse Positive Definite Systems,
|
|||
|
/// Prentice Hall, 1981.
|
|||
|
///
|
|||
|
/// Norman Gibbs, William Poole, Paul Stockmeyer,
|
|||
|
/// An Algorithm for Reducing the Bandwidth and Profile of a Sparse Matrix,
|
|||
|
/// SIAM Journal on Numerical Analysis,
|
|||
|
/// Volume 13, pages 236-250, 1976.
|
|||
|
///
|
|||
|
/// Norman Gibbs,
|
|||
|
/// Algorithm 509: A Hybrid Profile Reduction Algorithm,
|
|||
|
/// ACM Transactions on Mathematical Software,
|
|||
|
/// Volume 2, pages 378-387, 1976.
|
|||
|
/// </remarks>
|
|||
|
void FindRoot(ref int root, int[] mask, ref int level_num, int[] level_row,
|
|||
|
int[] level, int offset)
|
|||
|
{
|
|||
|
int[] pcol = matrix.ColumnPointers;
|
|||
|
int[] irow = matrix.RowIndices;
|
|||
|
|
|||
|
int iccsze;
|
|||
|
int j, jstrt;
|
|||
|
int k, kstop, kstrt;
|
|||
|
int mindeg;
|
|||
|
int nghbor, ndeg;
|
|||
|
int node;
|
|||
|
int level_num2 = 0;
|
|||
|
|
|||
|
// Determine the level structure rooted at ROOT.
|
|||
|
GetLevelSet(ref root, mask, ref level_num, level_row, level, offset);
|
|||
|
|
|||
|
// Count the number of nodes in this level structure.
|
|||
|
iccsze = level_row[level_num] - 1;
|
|||
|
|
|||
|
// Extreme cases:
|
|||
|
// A complete graph has a level set of only a single level.
|
|||
|
// Every node is equally good (or bad).
|
|||
|
// or
|
|||
|
// A "line graph" 0--0--0--0--0 has every node in its only level.
|
|||
|
// By chance, we've stumbled on the ideal root.
|
|||
|
if (level_num == 1 || level_num == iccsze)
|
|||
|
{
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
// Pick any node from the last level that has minimum degree
|
|||
|
// as the starting point to generate a new level set.
|
|||
|
for (; ; )
|
|||
|
{
|
|||
|
mindeg = iccsze;
|
|||
|
|
|||
|
jstrt = level_row[level_num - 1];
|
|||
|
root = level[offset + jstrt - 1];
|
|||
|
|
|||
|
if (jstrt < iccsze)
|
|||
|
{
|
|||
|
for (j = jstrt; j <= iccsze; j++)
|
|||
|
{
|
|||
|
node = level[offset + j - 1];
|
|||
|
ndeg = 0;
|
|||
|
kstrt = pcol[node - 1];
|
|||
|
kstop = pcol[node] - 1;
|
|||
|
|
|||
|
for (k = kstrt; k <= kstop; k++)
|
|||
|
{
|
|||
|
nghbor = irow[k - 1];
|
|||
|
if (mask[nghbor] > 0)
|
|||
|
{
|
|||
|
ndeg += 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (ndeg < mindeg)
|
|||
|
{
|
|||
|
root = node;
|
|||
|
mindeg = ndeg;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Generate the rooted level structure associated with this node.
|
|||
|
GetLevelSet(ref root, mask, ref level_num2, level_row, level, offset);
|
|||
|
|
|||
|
// If the number of levels did not increase, accept the new ROOT.
|
|||
|
if (level_num2 <= level_num)
|
|||
|
{
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
level_num = level_num2;
|
|||
|
|
|||
|
// In the unlikely case that ROOT is one endpoint of a line graph,
|
|||
|
// we can exit now.
|
|||
|
if (iccsze <= level_num)
|
|||
|
{
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Generates the connected level structure rooted at a given node.
|
|||
|
/// </summary>
|
|||
|
/// <param name="root">the node at which the level structure is to be rooted.</param>
|
|||
|
/// <param name="mask">MASK[NODE_NUM]. On input, only nodes with nonzero MASK are to be processed.
|
|||
|
/// On output, those nodes which were included in the level set have MASK set to 1.</param>
|
|||
|
/// <param name="level_num">Output, int LEVEL_NUM, the number of levels in the level structure. ROOT is
|
|||
|
/// in level 1. The neighbors of ROOT are in level 2, and so on.</param>
|
|||
|
/// <param name="level_row">Output, int LEVEL_ROW[NODE_NUM+1], the rooted level structure.</param>
|
|||
|
/// <param name="level">Output, int LEVEL[NODE_NUM], the rooted level structure.</param>
|
|||
|
/// <param name="node_num">the number of nodes.</param>
|
|||
|
/// <remarks>
|
|||
|
/// Only nodes for which MASK is nonzero will be considered.
|
|||
|
///
|
|||
|
/// The root node chosen by the user is assigned level 1, and masked.
|
|||
|
/// All (unmasked) nodes reachable from a node in level 1 are
|
|||
|
/// assigned level 2 and masked. The process continues until there
|
|||
|
/// are no unmasked nodes adjacent to any node in the current level.
|
|||
|
/// The number of levels may vary between 2 and NODE_NUM.
|
|||
|
///
|
|||
|
/// Reference:
|
|||
|
/// Alan George, Joseph Liu,
|
|||
|
/// Computer Solution of Large Sparse Positive Definite Systems,
|
|||
|
/// Prentice Hall, 1981.
|
|||
|
/// </remarks>
|
|||
|
void GetLevelSet(ref int root, int[] mask, ref int level_num, int[] level_row,
|
|||
|
int[] level, int offset)
|
|||
|
{
|
|||
|
int[] pcol = matrix.ColumnPointers;
|
|||
|
int[] irow = matrix.RowIndices;
|
|||
|
|
|||
|
int i, iccsze;
|
|||
|
int j, jstop, jstrt;
|
|||
|
int lbegin, lvlend, lvsize;
|
|||
|
int nbr;
|
|||
|
int node;
|
|||
|
|
|||
|
mask[root] = 0;
|
|||
|
level[offset] = root;
|
|||
|
level_num = 0;
|
|||
|
lvlend = 0;
|
|||
|
iccsze = 1;
|
|||
|
|
|||
|
// LBEGIN is the pointer to the beginning of the current level, and
|
|||
|
// LVLEND points to the end of this level.
|
|||
|
for (; ; )
|
|||
|
{
|
|||
|
lbegin = lvlend + 1;
|
|||
|
lvlend = iccsze;
|
|||
|
level_num += 1;
|
|||
|
level_row[level_num - 1] = lbegin;
|
|||
|
|
|||
|
// Generate the next level by finding all the masked neighbors of nodes
|
|||
|
// in the current level.
|
|||
|
for (i = lbegin; i <= lvlend; i++)
|
|||
|
{
|
|||
|
node = level[offset + i - 1];
|
|||
|
jstrt = pcol[node];
|
|||
|
jstop = pcol[node + 1] - 1;
|
|||
|
|
|||
|
for (j = jstrt; j <= jstop; j++)
|
|||
|
{
|
|||
|
nbr = irow[j - 1];
|
|||
|
|
|||
|
if (mask[nbr] != 0)
|
|||
|
{
|
|||
|
iccsze += 1;
|
|||
|
level[offset + iccsze - 1] = nbr;
|
|||
|
mask[nbr] = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Compute the current level width (the number of nodes encountered.)
|
|||
|
// If it is positive, generate the next level.
|
|||
|
lvsize = iccsze - lvlend;
|
|||
|
|
|||
|
if (lvsize <= 0)
|
|||
|
{
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
level_row[level_num] = lvlend + 1;
|
|||
|
|
|||
|
// Reset MASK to 1 for the nodes in the level structure.
|
|||
|
for (i = 0; i < iccsze; i++)
|
|||
|
{
|
|||
|
mask[level[offset + i]] = 1;
|
|||
|
}
|
|||
|
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Computes the degrees of the nodes in the connected component.
|
|||
|
/// </summary>
|
|||
|
/// <param name="root">the node that defines the connected component.</param>
|
|||
|
/// <param name="mask">MASK[NODE_NUM], is nonzero for those nodes which are to be considered.</param>
|
|||
|
/// <param name="deg">Output, int DEG[NODE_NUM], contains, for each node in the connected component, its degree.</param>
|
|||
|
/// <param name="iccsze">Output, int ICCSIZE, the number of nodes in the connected component.</param>
|
|||
|
/// <param name="ls">Output, int LS[NODE_NUM], stores in entries 1 through ICCSIZE the nodes in the
|
|||
|
/// connected component, starting with ROOT, and proceeding by levels.</param>
|
|||
|
/// <param name="node_num">the number of nodes.</param>
|
|||
|
/// <remarks>
|
|||
|
/// The connected component is specified by MASK and ROOT.
|
|||
|
/// Nodes for which MASK is zero are ignored.
|
|||
|
///
|
|||
|
/// Reference:
|
|||
|
/// Alan George, Joseph Liu,
|
|||
|
/// Computer Solution of Large Sparse Positive Definite Systems,
|
|||
|
/// Prentice Hall, 1981.
|
|||
|
/// </remarks>
|
|||
|
void Degree(int root, int[] mask, int[] deg, ref int iccsze, int[] ls, int offset)
|
|||
|
{
|
|||
|
int[] pcol = matrix.ColumnPointers;
|
|||
|
int[] irow = matrix.RowIndices;
|
|||
|
|
|||
|
int i, ideg;
|
|||
|
int j, jstop, jstrt;
|
|||
|
int lbegin, lvlend;
|
|||
|
int lvsize = 1;
|
|||
|
int nbr, node;
|
|||
|
|
|||
|
// The sign of ADJ_ROW(I) is used to indicate if node I has been considered.
|
|||
|
ls[offset] = root;
|
|||
|
pcol[root] = -pcol[root];
|
|||
|
lvlend = 0;
|
|||
|
iccsze = 1;
|
|||
|
|
|||
|
// If the current level width is nonzero, generate another level.
|
|||
|
while (lvsize > 0)
|
|||
|
{
|
|||
|
// LBEGIN is the pointer to the beginning of the current level, and
|
|||
|
// LVLEND points to the end of this level.
|
|||
|
lbegin = lvlend + 1;
|
|||
|
lvlend = iccsze;
|
|||
|
|
|||
|
// Find the degrees of nodes in the current level,
|
|||
|
// and at the same time, generate the next level.
|
|||
|
for (i = lbegin; i <= lvlend; i++)
|
|||
|
{
|
|||
|
node = ls[offset + i - 1];
|
|||
|
jstrt = -pcol[node];
|
|||
|
jstop = Math.Abs(pcol[node + 1]) - 1;
|
|||
|
ideg = 0;
|
|||
|
|
|||
|
for (j = jstrt; j <= jstop; j++)
|
|||
|
{
|
|||
|
nbr = irow[j - 1];
|
|||
|
|
|||
|
if (mask[nbr] != 0) // EDIT: [nbr - 1]
|
|||
|
{
|
|||
|
ideg = ideg + 1;
|
|||
|
|
|||
|
if (0 <= pcol[nbr]) // EDIT: [nbr - 1]
|
|||
|
{
|
|||
|
pcol[nbr] = -pcol[nbr]; // EDIT: [nbr - 1]
|
|||
|
iccsze = iccsze + 1;
|
|||
|
ls[offset + iccsze - 1] = nbr;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
deg[node] = ideg;
|
|||
|
}
|
|||
|
|
|||
|
// Compute the current level width.
|
|||
|
lvsize = iccsze - lvlend;
|
|||
|
}
|
|||
|
|
|||
|
// Reset ADJ_ROW to its correct sign and return.
|
|||
|
for (i = 0; i < iccsze; i++)
|
|||
|
{
|
|||
|
node = ls[offset + i];
|
|||
|
pcol[node] = -pcol[node];
|
|||
|
}
|
|||
|
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
#endregion
|
|||
|
|
|||
|
#region Tools
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Computes the bandwidth of a permuted adjacency matrix.
|
|||
|
/// </summary>
|
|||
|
/// <param name="perm">The permutation.</param>
|
|||
|
/// <param name="perm_inv">The inverse permutation.</param>
|
|||
|
/// <returns>Bandwidth of the permuted adjacency matrix.</returns>
|
|||
|
/// <remarks>
|
|||
|
/// The matrix is defined by the adjacency information and a permutation.
|
|||
|
/// The routine also computes the bandwidth and the size of the envelope.
|
|||
|
/// </remarks>
|
|||
|
int PermBandwidth(int[] perm, int[] perm_inv)
|
|||
|
{
|
|||
|
int[] pcol = matrix.ColumnPointers;
|
|||
|
int[] irow = matrix.RowIndices;
|
|||
|
|
|||
|
int col, i, j;
|
|||
|
|
|||
|
int band_lo = 0;
|
|||
|
int band_hi = 0;
|
|||
|
|
|||
|
int n = matrix.N;
|
|||
|
|
|||
|
for (i = 0; i < n; i++)
|
|||
|
{
|
|||
|
for (j = pcol[perm[i]]; j < pcol[perm[i] + 1]; j++)
|
|||
|
{
|
|||
|
col = perm_inv[irow[j - 1]];
|
|||
|
band_lo = Math.Max(band_lo, i - col);
|
|||
|
band_hi = Math.Max(band_hi, col - i);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return band_lo + 1 + band_hi;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Produces the inverse of a given permutation.
|
|||
|
/// </summary>
|
|||
|
/// <param name="n">Number of items permuted.</param>
|
|||
|
/// <param name="perm">PERM[N], a permutation.</param>
|
|||
|
/// <returns>The inverse permutation.</returns>
|
|||
|
int[] PermInverse(int[] perm)
|
|||
|
{
|
|||
|
int n = matrix.N;
|
|||
|
|
|||
|
int[] perm_inv = new int[n];
|
|||
|
|
|||
|
for (int i = 0; i < n; i++)
|
|||
|
{
|
|||
|
perm_inv[perm[i]] = i;
|
|||
|
}
|
|||
|
|
|||
|
return perm_inv;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Reverses the elements of an integer vector.
|
|||
|
/// </summary>
|
|||
|
/// <param name="size">number of entries in the array.</param>
|
|||
|
/// <param name="a">the array to be reversed.</param>
|
|||
|
/// <example>
|
|||
|
/// Input:
|
|||
|
/// N = 5,
|
|||
|
/// A = ( 11, 12, 13, 14, 15 ).
|
|||
|
///
|
|||
|
/// Output:
|
|||
|
/// A = ( 15, 14, 13, 12, 11 ).
|
|||
|
/// </example>
|
|||
|
void ReverseVector(int[] a, int offset, int size)
|
|||
|
{
|
|||
|
int i;
|
|||
|
int j;
|
|||
|
|
|||
|
for (i = 0; i < size / 2; i++)
|
|||
|
{
|
|||
|
j = a[offset + i];
|
|||
|
a[offset + i] = a[offset + size - 1 - i];
|
|||
|
a[offset + size - 1 - i] = j;
|
|||
|
}
|
|||
|
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
void Shift(int[] a, bool up)
|
|||
|
{
|
|||
|
int length = a.Length;
|
|||
|
|
|||
|
if (up)
|
|||
|
{
|
|||
|
for (int i = 0; i < length; a[i]++, i++) ;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
for (int i = 0; i < length; a[i]--, i++) ;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#endregion
|
|||
|
}
|
|||
|
}
|