rj-action-library/External/Triangle.NET/Triangle/Voronoi/Legacy/BoundedVoronoiLegacy.cs

693 lines
24 KiB
C#
Raw Permalink Normal View History

// -----------------------------------------------------------------------
// <copyright file="BoundedVoronoi.cs" company="">
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace TriangleNet.Voronoi.Legacy
{
using System;
using System.Collections.Generic;
using TriangleNet.Topology;
using TriangleNet.Geometry;
/// <summary>
/// The Bounded Voronoi Diagram is the dual of a PSLG triangulation.
/// </summary>
/// <remarks>
/// 2D Centroidal Voronoi Tessellations with Constraints, 2010,
/// Jane Tournois, Pierre Alliez and Olivier Devillers
/// </remarks>
[Obsolete("Use TriangleNet.Voronoi.BoundedVoronoi class instead.")]
public class BoundedVoronoiLegacy : IVoronoi
{
IPredicates predicates = RobustPredicates.Default;
Mesh mesh;
Point[] points;
List<VoronoiRegion> regions;
// Used for new points on segments.
List<Point> segPoints;
int segIndex;
Dictionary<int, SubSegment> subsegMap;
bool includeBoundary = true;
/// <summary>
/// Initializes a new instance of the <see cref="BoundedVoronoiLegacy" /> class.
/// </summary>
/// <param name="mesh">Mesh instance.</param>
public BoundedVoronoiLegacy(Mesh mesh)
: this(mesh, true)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="BoundedVoronoiLegacy" /> class.
/// </summary>
/// <param name="mesh">Mesh instance.</param>
public BoundedVoronoiLegacy(Mesh mesh, bool includeBoundary)
{
this.mesh = mesh;
this.includeBoundary = includeBoundary;
Generate();
}
/// <summary>
/// Gets the list of Voronoi vertices.
/// </summary>
public Point[] Points
{
get { return points; }
}
/// <summary>
/// Gets the list of Voronoi regions.
/// </summary>
public ICollection<VoronoiRegion> Regions
{
get { return regions; }
}
public IEnumerable<IEdge> Edges
{
get { return EnumerateEdges(); }
}
/// <summary>
/// Computes the bounded voronoi diagram.
/// </summary>
private void Generate()
{
mesh.Renumber();
mesh.MakeVertexMap();
// Allocate space for voronoi diagram
this.regions = new List<VoronoiRegion>(mesh.vertices.Count);
this.points = new Point[mesh.triangles.Count];
this.segPoints = new List<Point>(mesh.subsegs.Count * 4);
ComputeCircumCenters();
TagBlindTriangles();
foreach (var v in mesh.vertices.Values)
{
// TODO: Need a reliable way to check if a vertex is on a segment
if (v.type == VertexType.FreeVertex || v.label == 0)
{
ConstructCell(v);
}
else if (includeBoundary)
{
ConstructBoundaryCell(v);
}
}
// Add the new points on segments to the point array.
int length = points.Length;
Array.Resize<Point>(ref points, length + segPoints.Count);
for (int i = 0; i < segPoints.Count; i++)
{
points[length + i] = segPoints[i];
}
this.segPoints.Clear();
this.segPoints = null;
}
private void ComputeCircumCenters()
{
Otri tri = default(Otri);
double xi = 0, eta = 0;
Point pt;
// Compue triangle circumcenters
foreach (var item in mesh.triangles)
{
tri.tri = item;
pt = predicates.FindCircumcenter(tri.Org(), tri.Dest(), tri.Apex(), ref xi, ref eta);
pt.id = item.id;
points[item.id] = pt;
}
}
/// <summary>
/// Tag all blind triangles.
/// </summary>
/// <remarks>
/// A triangle is said to be blind if the triangle and its circumcenter
/// lie on two different sides of a constrained edge.
/// </remarks>
private void TagBlindTriangles()
{
int blinded = 0;
Stack<Triangle> triangles;
subsegMap = new Dictionary<int, SubSegment>();
Otri f = default(Otri);
Otri f0 = default(Otri);
Osub e = default(Osub);
Osub sub1 = default(Osub);
// Tag all triangles non-blind
foreach (var t in mesh.triangles)
{
// Use the infected flag for 'blinded' attribute.
t.infected = false;
}
// for each constrained edge e of cdt do
foreach (var ss in mesh.subsegs.Values)
{
// Create a stack: triangles
triangles = new Stack<Triangle>();
// for both adjacent triangles fe to e tagged non-blind do
// Push fe into triangles
e.seg = ss;
e.orient = 0;
e.Pivot(ref f);
if (f.tri.id != Mesh.DUMMY && !f.tri.infected)
{
triangles.Push(f.tri);
}
e.Sym();
e.Pivot(ref f);
if (f.tri.id != Mesh.DUMMY && !f.tri.infected)
{
triangles.Push(f.tri);
}
// while triangles is non-empty
while (triangles.Count > 0)
{
// Pop f from stack triangles
f.tri = triangles.Pop();
f.orient = 0;
// if f is blinded by e (use P) then
if (TriangleIsBlinded(ref f, ref e))
{
// Tag f as blinded by e
f.tri.infected = true;
blinded++;
// Store association triangle -> subseg
subsegMap.Add(f.tri.hash, e.seg);
// for each adjacent triangle f0 to f do
for (f.orient = 0; f.orient < 3; f.orient++)
{
f.Sym(ref f0);
f0.Pivot(ref sub1);
// if f0 is finite and tagged non-blind & the common edge
// between f and f0 is unconstrained then
if (f0.tri.id != Mesh.DUMMY && !f0.tri.infected && sub1.seg.hash == Mesh.DUMMY)
{
// Push f0 into triangles.
triangles.Push(f0.tri);
}
}
}
}
}
blinded = 0;
}
/// <summary>
/// Check if given triangle is blinded by given segment.
/// </summary>
/// <param name="tri">Triangle.</param>
/// <param name="seg">Segments</param>
/// <returns>Returns true, if the triangle is blinded.</returns>
private bool TriangleIsBlinded(ref Otri tri, ref Osub seg)
{
Point c, pt;
Vertex torg = tri.Org();
Vertex tdest = tri.Dest();
Vertex tapex = tri.Apex();
Vertex sorg = seg.Org();
Vertex sdest = seg.Dest();
c = this.points[tri.tri.id];
if (SegmentsIntersect(sorg, sdest, c, torg, out pt, true))
{
return true;
}
if (SegmentsIntersect(sorg, sdest, c, tdest, out pt, true))
{
return true;
}
if (SegmentsIntersect(sorg, sdest, c, tapex, out pt, true))
{
return true;
}
return false;
}
private void ConstructCell(Vertex vertex)
{
VoronoiRegion region = new VoronoiRegion(vertex);
regions.Add(region);
Otri f = default(Otri);
Otri f_init = default(Otri);
Otri f_next = default(Otri);
Osub sf = default(Osub);
Osub sfn = default(Osub);
Point cc_f, cc_f_next, p;
int n = mesh.triangles.Count;
// Call P the polygon (cell) in construction
List<Point> vpoints = new List<Point>();
// Call f_init a triangle incident to x
vertex.tri.Copy(ref f_init);
if (f_init.Org() != vertex)
{
throw new Exception("ConstructCell: inconsistent topology.");
}
// Let f be initialized to f_init
f_init.Copy(ref f);
// Call f_next the next triangle counterclockwise around x
f_init.Onext(ref f_next);
// repeat ... until f = f_init
do
{
// Call Lffnext the line going through the circumcenters of f and f_next
cc_f = this.points[f.tri.id];
cc_f_next = this.points[f_next.tri.id];
// if f is tagged non-blind then
if (!f.tri.infected)
{
// Insert the circumcenter of f into P
vpoints.Add(cc_f);
if (f_next.tri.infected)
{
// Call S_fnext the constrained edge blinding f_next
sfn.seg = subsegMap[f_next.tri.hash];
// Insert point Lf,f_next /\ Sf_next into P
if (SegmentsIntersect(sfn.Org(), sfn.Dest(), cc_f, cc_f_next, out p, true))
{
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
}
}
}
else
{
// Call Sf the constrained edge blinding f
sf.seg = subsegMap[f.tri.hash];
// if f_next is tagged non-blind then
if (!f_next.tri.infected)
{
// Insert point Lf,f_next /\ Sf into P
if (SegmentsIntersect(sf.Org(), sf.Dest(), cc_f, cc_f_next, out p, true))
{
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
}
}
else
{
// Call Sf_next the constrained edge blinding f_next
sfn.seg = subsegMap[f_next.tri.hash];
// if Sf != Sf_next then
if (!sf.Equal(sfn))
{
// Insert Lf,fnext /\ Sf and Lf,fnext /\ Sfnext into P
if (SegmentsIntersect(sf.Org(), sf.Dest(), cc_f, cc_f_next, out p, true))
{
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
}
if (SegmentsIntersect(sfn.Org(), sfn.Dest(), cc_f, cc_f_next, out p, true))
{
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
}
}
}
}
// f <- f_next
f_next.Copy(ref f);
// Call f_next the next triangle counterclockwise around x
f_next.Onext();
}
while (!f.Equals(f_init));
// Output: Bounded Voronoi cell of x in counterclockwise order.
region.Add(vpoints);
}
private void ConstructBoundaryCell(Vertex vertex)
{
VoronoiRegion region = new VoronoiRegion(vertex);
regions.Add(region);
Otri f = default(Otri);
Otri f_init = default(Otri);
Otri f_next = default(Otri);
Otri f_prev = default(Otri);
Osub sf = default(Osub);
Osub sfn = default(Osub);
Vertex torg, tdest, tapex, sorg, sdest;
Point cc_f, cc_f_next, p;
int n = mesh.triangles.Count;
// Call P the polygon (cell) in construction
List<Point> vpoints = new List<Point>();
// Call f_init a triangle incident to x
vertex.tri.Copy(ref f_init);
if (f_init.Org() != vertex)
{
throw new Exception("ConstructBoundaryCell: inconsistent topology.");
}
// Let f be initialized to f_init
f_init.Copy(ref f);
// Call f_next the next triangle counterclockwise around x
f_init.Onext(ref f_next);
f_init.Oprev(ref f_prev);
// Is the border to the left?
if (f_prev.tri.id != Mesh.DUMMY)
{
// Go clockwise until we reach the border (or the initial triangle)
while (f_prev.tri.id != Mesh.DUMMY && !f_prev.Equals(f_init))
{
f_prev.Copy(ref f);
f_prev.Oprev();
}
f.Copy(ref f_init);
f.Onext(ref f_next);
}
if (f_prev.tri.id == Mesh.DUMMY)
{
// For vertices on the domain boundaray, add the vertex. For
// internal boundaries don't add it.
p = new Point(vertex.x, vertex.y);
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
}
// Add midpoint of start triangles' edge.
torg = f.Org();
tdest = f.Dest();
p = new Point((torg.x + tdest.x) / 2, (torg.y + tdest.y) / 2);
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
// repeat ... until f = f_init
do
{
// Call Lffnext the line going through the circumcenters of f and f_next
cc_f = this.points[f.tri.id];
if (f_next.tri.id == Mesh.DUMMY)
{
if (!f.tri.infected)
{
// Add last circumcenter
vpoints.Add(cc_f);
}
// Add midpoint of last triangles' edge (chances are it has already
// been added, so post process cell to remove duplicates???)
torg = f.Org();
tapex = f.Apex();
p = new Point((torg.x + tapex.x) / 2, (torg.y + tapex.y) / 2);
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
break;
}
cc_f_next = this.points[f_next.tri.id];
// if f is tagged non-blind then
if (!f.tri.infected)
{
// Insert the circumcenter of f into P
vpoints.Add(cc_f);
if (f_next.tri.infected)
{
// Call S_fnext the constrained edge blinding f_next
sfn.seg = subsegMap[f_next.tri.hash];
// Insert point Lf,f_next /\ Sf_next into P
if (SegmentsIntersect(sfn.Org(), sfn.Dest(), cc_f, cc_f_next, out p, true))
{
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
}
}
}
else
{
// Call Sf the constrained edge blinding f
sf.seg = subsegMap[f.tri.hash];
sorg = sf.Org();
sdest = sf.Dest();
// if f_next is tagged non-blind then
if (!f_next.tri.infected)
{
tdest = f.Dest();
tapex = f.Apex();
// Both circumcenters lie on the blinded side, but we
// have to add the intersection with the segment.
// Center of f edge dest->apex
Point bisec = new Point((tdest.x + tapex.x) / 2, (tdest.y + tapex.y) / 2);
// Find intersection of seg with line through f's bisector and circumcenter
if (SegmentsIntersect(sorg, sdest, bisec, cc_f, out p, false))
{
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
}
// Insert point Lf,f_next /\ Sf into P
if (SegmentsIntersect(sorg, sdest, cc_f, cc_f_next, out p, true))
{
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
}
}
else
{
// Call Sf_next the constrained edge blinding f_next
sfn.seg = subsegMap[f_next.tri.hash];
// if Sf != Sf_next then
if (!sf.Equal(sfn))
{
// Insert Lf,fnext /\ Sf and Lf,fnext /\ Sfnext into P
if (SegmentsIntersect(sorg, sdest, cc_f, cc_f_next, out p, true))
{
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
}
if (SegmentsIntersect(sfn.Org(), sfn.Dest(), cc_f, cc_f_next, out p, true))
{
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
}
}
else
{
// Both circumcenters lie on the blinded side, but we
// have to add the intersection with the segment.
// Center of f_next edge org->dest
Point bisec = new Point((torg.x + tdest.x) / 2, (torg.y + tdest.y) / 2);
// Find intersection of seg with line through f_next's bisector and circumcenter
if (SegmentsIntersect(sorg, sdest, bisec, cc_f_next, out p, false))
{
p.id = n + segIndex++;
segPoints.Add(p);
vpoints.Add(p);
}
}
}
}
// f <- f_next
f_next.Copy(ref f);
// Call f_next the next triangle counterclockwise around x
f_next.Onext();
}
while (!f.Equals(f_init));
// Output: Bounded Voronoi cell of x in counterclockwise order.
region.Add(vpoints);
}
/// <summary>
/// Determines the intersection point of the line segment defined by points A and B with the
/// line segment defined by points C and D.
/// </summary>
/// <param name="seg">The first segment AB.</param>
/// <param name="pc">Endpoint C of second segment.</param>
/// <param name="pd">Endpoint D of second segment.</param>
/// <param name="p">Reference to the intersection point.</param>
/// <param name="strictIntersect">If false, pa and pb represent a line.</param>
/// <returns>Returns true if the intersection point was found, and stores that point in X,Y.
/// Returns false if there is no determinable intersection point, in which case X,Y will
/// be unmodified.
/// </returns>
private bool SegmentsIntersect(Point p1, Point p2, Point p3, Point p4, out Point p, bool strictIntersect)
{
p = null; // TODO: Voronoi SegmentsIntersect
double Ax = p1.x, Ay = p1.y;
double Bx = p2.x, By = p2.y;
double Cx = p3.x, Cy = p3.y;
double Dx = p4.x, Dy = p4.y;
double distAB, theCos, theSin, newX, ABpos;
// Fail if either line segment is zero-length.
if (Ax == Bx && Ay == By || Cx == Dx && Cy == Dy) return false;
// Fail if the segments share an end-point.
if (Ax == Cx && Ay == Cy || Bx == Cx && By == Cy
|| Ax == Dx && Ay == Dy || Bx == Dx && By == Dy)
{
return false;
}
// (1) Translate the system so that point A is on the origin.
Bx -= Ax; By -= Ay;
Cx -= Ax; Cy -= Ay;
Dx -= Ax; Dy -= Ay;
// Discover the length of segment A-B.
distAB = Math.Sqrt(Bx * Bx + By * By);
// (2) Rotate the system so that point B is on the positive X axis.
theCos = Bx / distAB;
theSin = By / distAB;
newX = Cx * theCos + Cy * theSin;
Cy = Cy * theCos - Cx * theSin; Cx = newX;
newX = Dx * theCos + Dy * theSin;
Dy = Dy * theCos - Dx * theSin; Dx = newX;
// Fail if segment C-D doesn't cross line A-B.
if (Cy < 0 && Dy < 0 || Cy >= 0 && Dy >= 0 && strictIntersect) return false;
// (3) Discover the position of the intersection point along line A-B.
ABpos = Dx + (Cx - Dx) * Dy / (Dy - Cy);
// Fail if segment C-D crosses line A-B outside of segment A-B.
if (ABpos < 0 || ABpos > distAB && strictIntersect) return false;
// (4) Apply the discovered position to line A-B in the original coordinate system.
p = new Point(Ax + ABpos * theCos, Ay + ABpos * theSin);
// Success.
return true;
}
// TODO: Voronoi enumerate edges
private IEnumerable<IEdge> EnumerateEdges()
{
// Copy edges
Point first, last;
var edges = new List<IEdge>(this.Regions.Count * 2);
foreach (var region in this.Regions)
{
first = null;
last = null;
foreach (var pt in region.Vertices)
{
if (first == null)
{
first = pt;
last = pt;
}
else
{
edges.Add(new Edge(last.id, pt.id));
last = pt;
}
}
if (region.Bounded && first != null)
{
edges.Add(new Edge(last.id, first.id));
}
}
return edges;
}
}
}