693 lines
24 KiB
C#
693 lines
24 KiB
C#
|
// -----------------------------------------------------------------------
|
|||
|
// <copyright file="BoundedVoronoi.cs" company="">
|
|||
|
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
|
|||
|
// </copyright>
|
|||
|
// -----------------------------------------------------------------------
|
|||
|
|
|||
|
namespace TriangleNet.Voronoi.Legacy
|
|||
|
{
|
|||
|
using System;
|
|||
|
using System.Collections.Generic;
|
|||
|
using TriangleNet.Topology;
|
|||
|
using TriangleNet.Geometry;
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// The Bounded Voronoi Diagram is the dual of a PSLG triangulation.
|
|||
|
/// </summary>
|
|||
|
/// <remarks>
|
|||
|
/// 2D Centroidal Voronoi Tessellations with Constraints, 2010,
|
|||
|
/// Jane Tournois, Pierre Alliez and Olivier Devillers
|
|||
|
/// </remarks>
|
|||
|
[Obsolete("Use TriangleNet.Voronoi.BoundedVoronoi class instead.")]
|
|||
|
public class BoundedVoronoiLegacy : IVoronoi
|
|||
|
{
|
|||
|
IPredicates predicates = RobustPredicates.Default;
|
|||
|
|
|||
|
Mesh mesh;
|
|||
|
|
|||
|
Point[] points;
|
|||
|
List<VoronoiRegion> regions;
|
|||
|
|
|||
|
// Used for new points on segments.
|
|||
|
List<Point> segPoints;
|
|||
|
int segIndex;
|
|||
|
|
|||
|
Dictionary<int, SubSegment> subsegMap;
|
|||
|
|
|||
|
bool includeBoundary = true;
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Initializes a new instance of the <see cref="BoundedVoronoiLegacy" /> class.
|
|||
|
/// </summary>
|
|||
|
/// <param name="mesh">Mesh instance.</param>
|
|||
|
public BoundedVoronoiLegacy(Mesh mesh)
|
|||
|
: this(mesh, true)
|
|||
|
{
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Initializes a new instance of the <see cref="BoundedVoronoiLegacy" /> class.
|
|||
|
/// </summary>
|
|||
|
/// <param name="mesh">Mesh instance.</param>
|
|||
|
public BoundedVoronoiLegacy(Mesh mesh, bool includeBoundary)
|
|||
|
{
|
|||
|
this.mesh = mesh;
|
|||
|
this.includeBoundary = includeBoundary;
|
|||
|
|
|||
|
Generate();
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Gets the list of Voronoi vertices.
|
|||
|
/// </summary>
|
|||
|
public Point[] Points
|
|||
|
{
|
|||
|
get { return points; }
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Gets the list of Voronoi regions.
|
|||
|
/// </summary>
|
|||
|
public ICollection<VoronoiRegion> Regions
|
|||
|
{
|
|||
|
get { return regions; }
|
|||
|
}
|
|||
|
|
|||
|
public IEnumerable<IEdge> Edges
|
|||
|
{
|
|||
|
get { return EnumerateEdges(); }
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Computes the bounded voronoi diagram.
|
|||
|
/// </summary>
|
|||
|
private void Generate()
|
|||
|
{
|
|||
|
mesh.Renumber();
|
|||
|
mesh.MakeVertexMap();
|
|||
|
|
|||
|
// Allocate space for voronoi diagram
|
|||
|
this.regions = new List<VoronoiRegion>(mesh.vertices.Count);
|
|||
|
|
|||
|
this.points = new Point[mesh.triangles.Count];
|
|||
|
this.segPoints = new List<Point>(mesh.subsegs.Count * 4);
|
|||
|
|
|||
|
ComputeCircumCenters();
|
|||
|
|
|||
|
TagBlindTriangles();
|
|||
|
|
|||
|
foreach (var v in mesh.vertices.Values)
|
|||
|
{
|
|||
|
// TODO: Need a reliable way to check if a vertex is on a segment
|
|||
|
if (v.type == VertexType.FreeVertex || v.label == 0)
|
|||
|
{
|
|||
|
ConstructCell(v);
|
|||
|
}
|
|||
|
else if (includeBoundary)
|
|||
|
{
|
|||
|
ConstructBoundaryCell(v);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Add the new points on segments to the point array.
|
|||
|
int length = points.Length;
|
|||
|
|
|||
|
Array.Resize<Point>(ref points, length + segPoints.Count);
|
|||
|
|
|||
|
for (int i = 0; i < segPoints.Count; i++)
|
|||
|
{
|
|||
|
points[length + i] = segPoints[i];
|
|||
|
}
|
|||
|
|
|||
|
this.segPoints.Clear();
|
|||
|
this.segPoints = null;
|
|||
|
}
|
|||
|
|
|||
|
private void ComputeCircumCenters()
|
|||
|
{
|
|||
|
Otri tri = default(Otri);
|
|||
|
double xi = 0, eta = 0;
|
|||
|
Point pt;
|
|||
|
|
|||
|
// Compue triangle circumcenters
|
|||
|
foreach (var item in mesh.triangles)
|
|||
|
{
|
|||
|
tri.tri = item;
|
|||
|
|
|||
|
pt = predicates.FindCircumcenter(tri.Org(), tri.Dest(), tri.Apex(), ref xi, ref eta);
|
|||
|
pt.id = item.id;
|
|||
|
|
|||
|
points[item.id] = pt;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Tag all blind triangles.
|
|||
|
/// </summary>
|
|||
|
/// <remarks>
|
|||
|
/// A triangle is said to be blind if the triangle and its circumcenter
|
|||
|
/// lie on two different sides of a constrained edge.
|
|||
|
/// </remarks>
|
|||
|
private void TagBlindTriangles()
|
|||
|
{
|
|||
|
int blinded = 0;
|
|||
|
|
|||
|
Stack<Triangle> triangles;
|
|||
|
subsegMap = new Dictionary<int, SubSegment>();
|
|||
|
|
|||
|
Otri f = default(Otri);
|
|||
|
Otri f0 = default(Otri);
|
|||
|
Osub e = default(Osub);
|
|||
|
Osub sub1 = default(Osub);
|
|||
|
|
|||
|
// Tag all triangles non-blind
|
|||
|
foreach (var t in mesh.triangles)
|
|||
|
{
|
|||
|
// Use the infected flag for 'blinded' attribute.
|
|||
|
t.infected = false;
|
|||
|
}
|
|||
|
|
|||
|
// for each constrained edge e of cdt do
|
|||
|
foreach (var ss in mesh.subsegs.Values)
|
|||
|
{
|
|||
|
// Create a stack: triangles
|
|||
|
triangles = new Stack<Triangle>();
|
|||
|
|
|||
|
// for both adjacent triangles fe to e tagged non-blind do
|
|||
|
// Push fe into triangles
|
|||
|
e.seg = ss;
|
|||
|
e.orient = 0;
|
|||
|
e.Pivot(ref f);
|
|||
|
|
|||
|
if (f.tri.id != Mesh.DUMMY && !f.tri.infected)
|
|||
|
{
|
|||
|
triangles.Push(f.tri);
|
|||
|
}
|
|||
|
|
|||
|
e.Sym();
|
|||
|
e.Pivot(ref f);
|
|||
|
|
|||
|
if (f.tri.id != Mesh.DUMMY && !f.tri.infected)
|
|||
|
{
|
|||
|
triangles.Push(f.tri);
|
|||
|
}
|
|||
|
|
|||
|
// while triangles is non-empty
|
|||
|
while (triangles.Count > 0)
|
|||
|
{
|
|||
|
// Pop f from stack triangles
|
|||
|
f.tri = triangles.Pop();
|
|||
|
f.orient = 0;
|
|||
|
|
|||
|
// if f is blinded by e (use P) then
|
|||
|
if (TriangleIsBlinded(ref f, ref e))
|
|||
|
{
|
|||
|
// Tag f as blinded by e
|
|||
|
f.tri.infected = true;
|
|||
|
blinded++;
|
|||
|
|
|||
|
// Store association triangle -> subseg
|
|||
|
subsegMap.Add(f.tri.hash, e.seg);
|
|||
|
|
|||
|
// for each adjacent triangle f0 to f do
|
|||
|
for (f.orient = 0; f.orient < 3; f.orient++)
|
|||
|
{
|
|||
|
f.Sym(ref f0);
|
|||
|
|
|||
|
f0.Pivot(ref sub1);
|
|||
|
|
|||
|
// if f0 is finite and tagged non-blind & the common edge
|
|||
|
// between f and f0 is unconstrained then
|
|||
|
if (f0.tri.id != Mesh.DUMMY && !f0.tri.infected && sub1.seg.hash == Mesh.DUMMY)
|
|||
|
{
|
|||
|
// Push f0 into triangles.
|
|||
|
triangles.Push(f0.tri);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
blinded = 0;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Check if given triangle is blinded by given segment.
|
|||
|
/// </summary>
|
|||
|
/// <param name="tri">Triangle.</param>
|
|||
|
/// <param name="seg">Segments</param>
|
|||
|
/// <returns>Returns true, if the triangle is blinded.</returns>
|
|||
|
private bool TriangleIsBlinded(ref Otri tri, ref Osub seg)
|
|||
|
{
|
|||
|
Point c, pt;
|
|||
|
|
|||
|
Vertex torg = tri.Org();
|
|||
|
Vertex tdest = tri.Dest();
|
|||
|
Vertex tapex = tri.Apex();
|
|||
|
|
|||
|
Vertex sorg = seg.Org();
|
|||
|
Vertex sdest = seg.Dest();
|
|||
|
|
|||
|
c = this.points[tri.tri.id];
|
|||
|
|
|||
|
if (SegmentsIntersect(sorg, sdest, c, torg, out pt, true))
|
|||
|
{
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
if (SegmentsIntersect(sorg, sdest, c, tdest, out pt, true))
|
|||
|
{
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
if (SegmentsIntersect(sorg, sdest, c, tapex, out pt, true))
|
|||
|
{
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
private void ConstructCell(Vertex vertex)
|
|||
|
{
|
|||
|
VoronoiRegion region = new VoronoiRegion(vertex);
|
|||
|
regions.Add(region);
|
|||
|
|
|||
|
Otri f = default(Otri);
|
|||
|
Otri f_init = default(Otri);
|
|||
|
Otri f_next = default(Otri);
|
|||
|
Osub sf = default(Osub);
|
|||
|
Osub sfn = default(Osub);
|
|||
|
|
|||
|
Point cc_f, cc_f_next, p;
|
|||
|
|
|||
|
int n = mesh.triangles.Count;
|
|||
|
|
|||
|
// Call P the polygon (cell) in construction
|
|||
|
List<Point> vpoints = new List<Point>();
|
|||
|
|
|||
|
// Call f_init a triangle incident to x
|
|||
|
vertex.tri.Copy(ref f_init);
|
|||
|
|
|||
|
if (f_init.Org() != vertex)
|
|||
|
{
|
|||
|
throw new Exception("ConstructCell: inconsistent topology.");
|
|||
|
}
|
|||
|
|
|||
|
// Let f be initialized to f_init
|
|||
|
f_init.Copy(ref f);
|
|||
|
// Call f_next the next triangle counterclockwise around x
|
|||
|
f_init.Onext(ref f_next);
|
|||
|
|
|||
|
// repeat ... until f = f_init
|
|||
|
do
|
|||
|
{
|
|||
|
// Call Lffnext the line going through the circumcenters of f and f_next
|
|||
|
cc_f = this.points[f.tri.id];
|
|||
|
cc_f_next = this.points[f_next.tri.id];
|
|||
|
|
|||
|
// if f is tagged non-blind then
|
|||
|
if (!f.tri.infected)
|
|||
|
{
|
|||
|
// Insert the circumcenter of f into P
|
|||
|
vpoints.Add(cc_f);
|
|||
|
|
|||
|
if (f_next.tri.infected)
|
|||
|
{
|
|||
|
// Call S_fnext the constrained edge blinding f_next
|
|||
|
sfn.seg = subsegMap[f_next.tri.hash];
|
|||
|
|
|||
|
// Insert point Lf,f_next /\ Sf_next into P
|
|||
|
if (SegmentsIntersect(sfn.Org(), sfn.Dest(), cc_f, cc_f_next, out p, true))
|
|||
|
{
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
// Call Sf the constrained edge blinding f
|
|||
|
sf.seg = subsegMap[f.tri.hash];
|
|||
|
|
|||
|
// if f_next is tagged non-blind then
|
|||
|
if (!f_next.tri.infected)
|
|||
|
{
|
|||
|
// Insert point Lf,f_next /\ Sf into P
|
|||
|
if (SegmentsIntersect(sf.Org(), sf.Dest(), cc_f, cc_f_next, out p, true))
|
|||
|
{
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
// Call Sf_next the constrained edge blinding f_next
|
|||
|
sfn.seg = subsegMap[f_next.tri.hash];
|
|||
|
|
|||
|
// if Sf != Sf_next then
|
|||
|
if (!sf.Equal(sfn))
|
|||
|
{
|
|||
|
// Insert Lf,fnext /\ Sf and Lf,fnext /\ Sfnext into P
|
|||
|
if (SegmentsIntersect(sf.Org(), sf.Dest(), cc_f, cc_f_next, out p, true))
|
|||
|
{
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
}
|
|||
|
|
|||
|
if (SegmentsIntersect(sfn.Org(), sfn.Dest(), cc_f, cc_f_next, out p, true))
|
|||
|
{
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// f <- f_next
|
|||
|
f_next.Copy(ref f);
|
|||
|
|
|||
|
// Call f_next the next triangle counterclockwise around x
|
|||
|
f_next.Onext();
|
|||
|
}
|
|||
|
while (!f.Equals(f_init));
|
|||
|
|
|||
|
// Output: Bounded Voronoi cell of x in counterclockwise order.
|
|||
|
region.Add(vpoints);
|
|||
|
}
|
|||
|
|
|||
|
private void ConstructBoundaryCell(Vertex vertex)
|
|||
|
{
|
|||
|
VoronoiRegion region = new VoronoiRegion(vertex);
|
|||
|
regions.Add(region);
|
|||
|
|
|||
|
Otri f = default(Otri);
|
|||
|
Otri f_init = default(Otri);
|
|||
|
Otri f_next = default(Otri);
|
|||
|
Otri f_prev = default(Otri);
|
|||
|
Osub sf = default(Osub);
|
|||
|
Osub sfn = default(Osub);
|
|||
|
|
|||
|
Vertex torg, tdest, tapex, sorg, sdest;
|
|||
|
Point cc_f, cc_f_next, p;
|
|||
|
|
|||
|
int n = mesh.triangles.Count;
|
|||
|
|
|||
|
// Call P the polygon (cell) in construction
|
|||
|
List<Point> vpoints = new List<Point>();
|
|||
|
|
|||
|
// Call f_init a triangle incident to x
|
|||
|
vertex.tri.Copy(ref f_init);
|
|||
|
|
|||
|
if (f_init.Org() != vertex)
|
|||
|
{
|
|||
|
throw new Exception("ConstructBoundaryCell: inconsistent topology.");
|
|||
|
}
|
|||
|
// Let f be initialized to f_init
|
|||
|
f_init.Copy(ref f);
|
|||
|
// Call f_next the next triangle counterclockwise around x
|
|||
|
f_init.Onext(ref f_next);
|
|||
|
|
|||
|
f_init.Oprev(ref f_prev);
|
|||
|
|
|||
|
// Is the border to the left?
|
|||
|
if (f_prev.tri.id != Mesh.DUMMY)
|
|||
|
{
|
|||
|
// Go clockwise until we reach the border (or the initial triangle)
|
|||
|
while (f_prev.tri.id != Mesh.DUMMY && !f_prev.Equals(f_init))
|
|||
|
{
|
|||
|
f_prev.Copy(ref f);
|
|||
|
f_prev.Oprev();
|
|||
|
}
|
|||
|
|
|||
|
f.Copy(ref f_init);
|
|||
|
f.Onext(ref f_next);
|
|||
|
}
|
|||
|
|
|||
|
if (f_prev.tri.id == Mesh.DUMMY)
|
|||
|
{
|
|||
|
// For vertices on the domain boundaray, add the vertex. For
|
|||
|
// internal boundaries don't add it.
|
|||
|
p = new Point(vertex.x, vertex.y);
|
|||
|
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
}
|
|||
|
|
|||
|
// Add midpoint of start triangles' edge.
|
|||
|
torg = f.Org();
|
|||
|
tdest = f.Dest();
|
|||
|
p = new Point((torg.x + tdest.x) / 2, (torg.y + tdest.y) / 2);
|
|||
|
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
|
|||
|
// repeat ... until f = f_init
|
|||
|
do
|
|||
|
{
|
|||
|
// Call Lffnext the line going through the circumcenters of f and f_next
|
|||
|
cc_f = this.points[f.tri.id];
|
|||
|
|
|||
|
if (f_next.tri.id == Mesh.DUMMY)
|
|||
|
{
|
|||
|
if (!f.tri.infected)
|
|||
|
{
|
|||
|
// Add last circumcenter
|
|||
|
vpoints.Add(cc_f);
|
|||
|
}
|
|||
|
|
|||
|
// Add midpoint of last triangles' edge (chances are it has already
|
|||
|
// been added, so post process cell to remove duplicates???)
|
|||
|
torg = f.Org();
|
|||
|
tapex = f.Apex();
|
|||
|
p = new Point((torg.x + tapex.x) / 2, (torg.y + tapex.y) / 2);
|
|||
|
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
cc_f_next = this.points[f_next.tri.id];
|
|||
|
|
|||
|
// if f is tagged non-blind then
|
|||
|
if (!f.tri.infected)
|
|||
|
{
|
|||
|
// Insert the circumcenter of f into P
|
|||
|
vpoints.Add(cc_f);
|
|||
|
|
|||
|
if (f_next.tri.infected)
|
|||
|
{
|
|||
|
// Call S_fnext the constrained edge blinding f_next
|
|||
|
sfn.seg = subsegMap[f_next.tri.hash];
|
|||
|
|
|||
|
// Insert point Lf,f_next /\ Sf_next into P
|
|||
|
if (SegmentsIntersect(sfn.Org(), sfn.Dest(), cc_f, cc_f_next, out p, true))
|
|||
|
{
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
// Call Sf the constrained edge blinding f
|
|||
|
sf.seg = subsegMap[f.tri.hash];
|
|||
|
|
|||
|
sorg = sf.Org();
|
|||
|
sdest = sf.Dest();
|
|||
|
|
|||
|
// if f_next is tagged non-blind then
|
|||
|
if (!f_next.tri.infected)
|
|||
|
{
|
|||
|
tdest = f.Dest();
|
|||
|
tapex = f.Apex();
|
|||
|
|
|||
|
// Both circumcenters lie on the blinded side, but we
|
|||
|
// have to add the intersection with the segment.
|
|||
|
|
|||
|
// Center of f edge dest->apex
|
|||
|
Point bisec = new Point((tdest.x + tapex.x) / 2, (tdest.y + tapex.y) / 2);
|
|||
|
|
|||
|
// Find intersection of seg with line through f's bisector and circumcenter
|
|||
|
if (SegmentsIntersect(sorg, sdest, bisec, cc_f, out p, false))
|
|||
|
{
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
}
|
|||
|
|
|||
|
// Insert point Lf,f_next /\ Sf into P
|
|||
|
if (SegmentsIntersect(sorg, sdest, cc_f, cc_f_next, out p, true))
|
|||
|
{
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
// Call Sf_next the constrained edge blinding f_next
|
|||
|
sfn.seg = subsegMap[f_next.tri.hash];
|
|||
|
|
|||
|
// if Sf != Sf_next then
|
|||
|
if (!sf.Equal(sfn))
|
|||
|
{
|
|||
|
// Insert Lf,fnext /\ Sf and Lf,fnext /\ Sfnext into P
|
|||
|
if (SegmentsIntersect(sorg, sdest, cc_f, cc_f_next, out p, true))
|
|||
|
{
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
}
|
|||
|
|
|||
|
if (SegmentsIntersect(sfn.Org(), sfn.Dest(), cc_f, cc_f_next, out p, true))
|
|||
|
{
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
// Both circumcenters lie on the blinded side, but we
|
|||
|
// have to add the intersection with the segment.
|
|||
|
|
|||
|
// Center of f_next edge org->dest
|
|||
|
Point bisec = new Point((torg.x + tdest.x) / 2, (torg.y + tdest.y) / 2);
|
|||
|
|
|||
|
// Find intersection of seg with line through f_next's bisector and circumcenter
|
|||
|
if (SegmentsIntersect(sorg, sdest, bisec, cc_f_next, out p, false))
|
|||
|
{
|
|||
|
p.id = n + segIndex++;
|
|||
|
segPoints.Add(p);
|
|||
|
vpoints.Add(p);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// f <- f_next
|
|||
|
f_next.Copy(ref f);
|
|||
|
|
|||
|
// Call f_next the next triangle counterclockwise around x
|
|||
|
f_next.Onext();
|
|||
|
}
|
|||
|
while (!f.Equals(f_init));
|
|||
|
|
|||
|
// Output: Bounded Voronoi cell of x in counterclockwise order.
|
|||
|
region.Add(vpoints);
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Determines the intersection point of the line segment defined by points A and B with the
|
|||
|
/// line segment defined by points C and D.
|
|||
|
/// </summary>
|
|||
|
/// <param name="seg">The first segment AB.</param>
|
|||
|
/// <param name="pc">Endpoint C of second segment.</param>
|
|||
|
/// <param name="pd">Endpoint D of second segment.</param>
|
|||
|
/// <param name="p">Reference to the intersection point.</param>
|
|||
|
/// <param name="strictIntersect">If false, pa and pb represent a line.</param>
|
|||
|
/// <returns>Returns true if the intersection point was found, and stores that point in X,Y.
|
|||
|
/// Returns false if there is no determinable intersection point, in which case X,Y will
|
|||
|
/// be unmodified.
|
|||
|
/// </returns>
|
|||
|
private bool SegmentsIntersect(Point p1, Point p2, Point p3, Point p4, out Point p, bool strictIntersect)
|
|||
|
{
|
|||
|
p = null; // TODO: Voronoi SegmentsIntersect
|
|||
|
|
|||
|
double Ax = p1.x, Ay = p1.y;
|
|||
|
double Bx = p2.x, By = p2.y;
|
|||
|
double Cx = p3.x, Cy = p3.y;
|
|||
|
double Dx = p4.x, Dy = p4.y;
|
|||
|
|
|||
|
double distAB, theCos, theSin, newX, ABpos;
|
|||
|
|
|||
|
// Fail if either line segment is zero-length.
|
|||
|
if (Ax == Bx && Ay == By || Cx == Dx && Cy == Dy) return false;
|
|||
|
|
|||
|
// Fail if the segments share an end-point.
|
|||
|
if (Ax == Cx && Ay == Cy || Bx == Cx && By == Cy
|
|||
|
|| Ax == Dx && Ay == Dy || Bx == Dx && By == Dy)
|
|||
|
{
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
// (1) Translate the system so that point A is on the origin.
|
|||
|
Bx -= Ax; By -= Ay;
|
|||
|
Cx -= Ax; Cy -= Ay;
|
|||
|
Dx -= Ax; Dy -= Ay;
|
|||
|
|
|||
|
// Discover the length of segment A-B.
|
|||
|
distAB = Math.Sqrt(Bx * Bx + By * By);
|
|||
|
|
|||
|
// (2) Rotate the system so that point B is on the positive X axis.
|
|||
|
theCos = Bx / distAB;
|
|||
|
theSin = By / distAB;
|
|||
|
newX = Cx * theCos + Cy * theSin;
|
|||
|
Cy = Cy * theCos - Cx * theSin; Cx = newX;
|
|||
|
newX = Dx * theCos + Dy * theSin;
|
|||
|
Dy = Dy * theCos - Dx * theSin; Dx = newX;
|
|||
|
|
|||
|
// Fail if segment C-D doesn't cross line A-B.
|
|||
|
if (Cy < 0 && Dy < 0 || Cy >= 0 && Dy >= 0 && strictIntersect) return false;
|
|||
|
|
|||
|
// (3) Discover the position of the intersection point along line A-B.
|
|||
|
ABpos = Dx + (Cx - Dx) * Dy / (Dy - Cy);
|
|||
|
|
|||
|
// Fail if segment C-D crosses line A-B outside of segment A-B.
|
|||
|
if (ABpos < 0 || ABpos > distAB && strictIntersect) return false;
|
|||
|
|
|||
|
// (4) Apply the discovered position to line A-B in the original coordinate system.
|
|||
|
p = new Point(Ax + ABpos * theCos, Ay + ABpos * theSin);
|
|||
|
|
|||
|
// Success.
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
// TODO: Voronoi enumerate edges
|
|||
|
|
|||
|
private IEnumerable<IEdge> EnumerateEdges()
|
|||
|
{
|
|||
|
// Copy edges
|
|||
|
Point first, last;
|
|||
|
var edges = new List<IEdge>(this.Regions.Count * 2);
|
|||
|
foreach (var region in this.Regions)
|
|||
|
{
|
|||
|
first = null;
|
|||
|
last = null;
|
|||
|
|
|||
|
foreach (var pt in region.Vertices)
|
|||
|
{
|
|||
|
if (first == null)
|
|||
|
{
|
|||
|
first = pt;
|
|||
|
last = pt;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
edges.Add(new Edge(last.id, pt.id));
|
|||
|
|
|||
|
last = pt;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (region.Bounded && first != null)
|
|||
|
{
|
|||
|
edges.Add(new Edge(last.id, first.id));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return edges;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|