rj-action-library/External/Triangle.NET/Triangle/Meshing/Converter.cs

488 lines
18 KiB
C#
Raw Permalink Normal View History

// -----------------------------------------------------------------------
// <copyright file="Converter.cs" company="">
// Original Triangle code by Jonathan Richard Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace TriangleNet.Meshing
{
using System;
using System.Collections.Generic;
using System.Linq;
using TriangleNet.Geometry;
using TriangleNet.Topology;
using TriangleNet.Topology.DCEL;
using HVertex = TriangleNet.Topology.DCEL.Vertex;
using TVertex = TriangleNet.Geometry.Vertex;
/// <summary>
/// The Converter class provides methods for mesh reconstruction and conversion.
/// </summary>
public static class Converter
{
#region Triangle mesh conversion
/// <summary>
/// Reconstruct a triangulation from its raw data representation.
/// </summary>
public static Mesh ToMesh(Polygon polygon, IList<ITriangle> triangles)
{
return ToMesh(polygon, triangles.ToArray());
}
/// <summary>
/// Reconstruct a triangulation from its raw data representation.
/// </summary>
public static Mesh ToMesh(Polygon polygon, ITriangle[] triangles)
{
Otri tri = default(Otri);
Osub subseg = default(Osub);
int i = 0;
int elements = triangles == null ? 0 : triangles.Length;
int segments = polygon.Segments.Count;
// TODO: Configuration should be a function argument.
var mesh = new Mesh(new Configuration());
mesh.TransferNodes(polygon.Points);
mesh.regions.AddRange(polygon.Regions);
mesh.behavior.useRegions = polygon.Regions.Count > 0;
if (polygon.Segments.Count > 0)
{
mesh.behavior.Poly = true;
mesh.holes.AddRange(polygon.Holes);
}
// Create the triangles.
for (i = 0; i < elements; i++)
{
mesh.MakeTriangle(ref tri);
}
if (mesh.behavior.Poly)
{
mesh.insegments = segments;
// Create the subsegments.
for (i = 0; i < segments; i++)
{
mesh.MakeSegment(ref subseg);
}
}
var vertexarray = SetNeighbors(mesh, triangles);
SetSegments(mesh, polygon, vertexarray);
return mesh;
}
/// <summary>
/// Finds the adjacencies between triangles by forming a stack of triangles for
/// each vertex. Each triangle is on three different stacks simultaneously.
/// </summary>
private static List<Otri>[] SetNeighbors(Mesh mesh, ITriangle[] triangles)
{
Otri tri = default(Otri);
Otri triangleleft = default(Otri);
Otri checktri = default(Otri);
Otri checkleft = default(Otri);
Otri nexttri;
TVertex tdest, tapex;
TVertex checkdest, checkapex;
int[] corner = new int[3];
int aroundvertex;
int i;
// Allocate a temporary array that maps each vertex to some adjacent triangle.
var vertexarray = new List<Otri>[mesh.vertices.Count];
// Each vertex is initially unrepresented.
for (i = 0; i < mesh.vertices.Count; i++)
{
Otri tmp = default(Otri);
tmp.tri = mesh.dummytri;
vertexarray[i] = new List<Otri>(3);
vertexarray[i].Add(tmp);
}
i = 0;
// Read the triangles from the .ele file, and link
// together those that share an edge.
foreach (var item in mesh.triangles)
{
tri.tri = item;
// Copy the triangle's three corners.
for (int j = 0; j < 3; j++)
{
corner[j] = triangles[i].GetVertexID(j);
if ((corner[j] < 0) || (corner[j] >= mesh.invertices))
{
Log.Instance.Error("Triangle has an invalid vertex index.", "MeshReader.Reconstruct()");
throw new Exception("Triangle has an invalid vertex index.");
}
}
// Read the triangle's attributes.
tri.tri.label = triangles[i].Label;
// TODO: VarArea
if (mesh.behavior.VarArea)
{
tri.tri.area = triangles[i].Area;
}
// Set the triangle's vertices.
tri.orient = 0;
tri.SetOrg(mesh.vertices[corner[0]]);
tri.SetDest(mesh.vertices[corner[1]]);
tri.SetApex(mesh.vertices[corner[2]]);
// Try linking the triangle to others that share these vertices.
for (tri.orient = 0; tri.orient < 3; tri.orient++)
{
// Take the number for the origin of triangleloop.
aroundvertex = corner[tri.orient];
int index = vertexarray[aroundvertex].Count - 1;
// Look for other triangles having this vertex.
nexttri = vertexarray[aroundvertex][index];
// Push the current triangle onto the stack.
vertexarray[aroundvertex].Add(tri);
checktri = nexttri;
if (checktri.tri.id != Mesh.DUMMY)
{
tdest = tri.Dest();
tapex = tri.Apex();
// Look for other triangles that share an edge.
do
{
checkdest = checktri.Dest();
checkapex = checktri.Apex();
if (tapex == checkdest)
{
// The two triangles share an edge; bond them together.
tri.Lprev(ref triangleleft);
triangleleft.Bond(ref checktri);
}
if (tdest == checkapex)
{
// The two triangles share an edge; bond them together.
checktri.Lprev(ref checkleft);
tri.Bond(ref checkleft);
}
// Find the next triangle in the stack.
index--;
nexttri = vertexarray[aroundvertex][index];
checktri = nexttri;
} while (checktri.tri.id != Mesh.DUMMY);
}
}
i++;
}
return vertexarray;
}
/// <summary>
/// Finds the adjacencies between triangles and subsegments.
/// </summary>
private static void SetSegments(Mesh mesh, Polygon polygon, List<Otri>[] vertexarray)
{
Otri checktri = default(Otri);
Otri nexttri; // Triangle
TVertex checkdest;
Otri checkneighbor = default(Otri);
Osub subseg = default(Osub);
Otri prevlink; // Triangle
TVertex tmp;
TVertex sorg, sdest;
bool notfound;
//bool segmentmarkers = false;
int boundmarker;
int aroundvertex;
int i;
int hullsize = 0;
// Prepare to count the boundary edges.
if (mesh.behavior.Poly)
{
// Link the segments to their neighboring triangles.
boundmarker = 0;
i = 0;
foreach (var item in mesh.subsegs.Values)
{
subseg.seg = item;
sorg = polygon.Segments[i].GetVertex(0);
sdest = polygon.Segments[i].GetVertex(1);
boundmarker = polygon.Segments[i].Label;
if ((sorg.id < 0 || sorg.id >= mesh.invertices) || (sdest.id < 0 || sdest.id >= mesh.invertices))
{
Log.Instance.Error("Segment has an invalid vertex index.", "MeshReader.Reconstruct()");
throw new Exception("Segment has an invalid vertex index.");
}
// set the subsegment's vertices.
subseg.orient = 0;
subseg.SetOrg(sorg);
subseg.SetDest(sdest);
subseg.SetSegOrg(sorg);
subseg.SetSegDest(sdest);
subseg.seg.boundary = boundmarker;
// Try linking the subsegment to triangles that share these vertices.
for (subseg.orient = 0; subseg.orient < 2; subseg.orient++)
{
// Take the number for the destination of subsegloop.
aroundvertex = subseg.orient == 1 ? sorg.id : sdest.id;
int index = vertexarray[aroundvertex].Count - 1;
// Look for triangles having this vertex.
prevlink = vertexarray[aroundvertex][index];
nexttri = vertexarray[aroundvertex][index];
checktri = nexttri;
tmp = subseg.Org();
notfound = true;
// Look for triangles having this edge. Note that I'm only
// comparing each triangle's destination with the subsegment;
// each triangle's apex is handled through a different vertex.
// Because each triangle appears on three vertices' lists, each
// occurrence of a triangle on a list can (and does) represent
// an edge. In this way, most edges are represented twice, and
// every triangle-subsegment bond is represented once.
while (notfound && (checktri.tri.id != Mesh.DUMMY))
{
checkdest = checktri.Dest();
if (tmp == checkdest)
{
// We have a match. Remove this triangle from the list.
//prevlink = vertexarray[aroundvertex][index];
vertexarray[aroundvertex].Remove(prevlink);
// Bond the subsegment to the triangle.
checktri.SegBond(ref subseg);
// Check if this is a boundary edge.
checktri.Sym(ref checkneighbor);
if (checkneighbor.tri.id == Mesh.DUMMY)
{
// The next line doesn't insert a subsegment (because there's
// already one there), but it sets the boundary markers of
// the existing subsegment and its vertices.
mesh.InsertSubseg(ref checktri, 1);
hullsize++;
}
notfound = false;
}
index--;
// Find the next triangle in the stack.
prevlink = vertexarray[aroundvertex][index];
nexttri = vertexarray[aroundvertex][index];
checktri = nexttri;
}
}
i++;
}
}
// Mark the remaining edges as not being attached to any subsegment.
// Also, count the (yet uncounted) boundary edges.
for (i = 0; i < mesh.vertices.Count; i++)
{
// Search the stack of triangles adjacent to a vertex.
int index = vertexarray[i].Count - 1;
nexttri = vertexarray[i][index];
checktri = nexttri;
while (checktri.tri.id != Mesh.DUMMY)
{
// Find the next triangle in the stack before this
// information gets overwritten.
index--;
nexttri = vertexarray[i][index];
// No adjacent subsegment. (This overwrites the stack info.)
checktri.SegDissolve(mesh.dummysub);
checktri.Sym(ref checkneighbor);
if (checkneighbor.tri.id == Mesh.DUMMY)
{
mesh.InsertSubseg(ref checktri, 1);
hullsize++;
}
checktri = nexttri;
}
}
mesh.hullsize = hullsize;
}
#endregion
#region DCEL conversion
public static DcelMesh ToDCEL(Mesh mesh)
{
var dcel = new DcelMesh();
var vertices = new HVertex[mesh.vertices.Count];
var faces = new Face[mesh.triangles.Count];
dcel.HalfEdges.Capacity = 2 * mesh.NumberOfEdges;
mesh.Renumber();
HVertex vertex;
foreach (var v in mesh.vertices.Values)
{
vertex = new HVertex(v.x, v.y);
vertex.id = v.id;
vertex.label = v.label;
vertices[v.id] = vertex;
}
// Maps a triangle to its 3 edges (used to set next pointers).
var map = new List<HalfEdge>[mesh.triangles.Count];
Face face;
foreach (var t in mesh.triangles)
{
face = new Face(null);
face.id = t.id;
faces[t.id] = face;
map[t.id] = new List<HalfEdge>(3);
}
Otri tri = default(Otri), neighbor = default(Otri);
TriangleNet.Geometry.Vertex org, dest;
int id, nid, count = mesh.triangles.Count;
HalfEdge edge, twin, next;
var edges = dcel.HalfEdges;
// Count half-edges (edge ids).
int k = 0;
// Maps a vertex to its leaving boundary edge.
var boundary = new Dictionary<int, HalfEdge>();
foreach (var t in mesh.triangles)
{
id = t.id;
tri.tri = t;
for (int i = 0; i < 3; i++)
{
tri.orient = i;
tri.Sym(ref neighbor);
nid = neighbor.tri.id;
if (id < nid || nid < 0)
{
face = faces[id];
// Get the endpoints of the current triangle edge.
org = tri.Org();
dest = tri.Dest();
// Create half-edges.
edge = new HalfEdge(vertices[org.id], face);
twin = new HalfEdge(vertices[dest.id], nid < 0 ? Face.Empty : faces[nid]);
map[id].Add(edge);
if (nid >= 0)
{
map[nid].Add(twin);
}
else
{
boundary.Add(dest.id, twin);
}
// Set leaving edges.
edge.origin.leaving = edge;
twin.origin.leaving = twin;
// Set twin edges.
edge.twin = twin;
twin.twin = edge;
edge.id = k++;
twin.id = k++;
edges.Add(edge);
edges.Add(twin);
}
}
}
// Set next pointers for each triangle face.
foreach (var t in map)
{
edge = t[0];
next = t[1];
if (edge.twin.origin.id == next.origin.id)
{
edge.next = next;
next.next = t[2];
t[2].next = edge;
}
else
{
edge.next = t[2];
next.next = edge;
t[2].next = next;
}
}
// Resolve boundary edges.
foreach (var e in boundary.Values)
{
e.next = boundary[e.twin.origin.id];
}
dcel.Vertices.AddRange(vertices);
dcel.Faces.AddRange(faces);
return dcel;
}
#endregion
}
}